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Abstract  
Constructionism provided an early justification for children to study computers, but today's 
dominant approaches to K-12 computer science education are vulnerable to some of the same 
critiques Papert (1980) made of traditional schooling. In this paper, we identify three themes of 
Constructionism (computing cultures, material intelligence, and liberatory pedagogy) and use 
them to analyze existing approaches to K-12 computer science education. We then use these 
themes as design goals for a Constructionist ninth-grade introductory computer science course 
which is currently being implemented. This paper is part of a larger research project whose goal 
is to demonstrate the feasibility of a course focused on fully realizing the ambitious epistemological 
goals of Constructionism. As we contribute to a vision for K-12 computer science education, we 
hope to help recover the central role of Constructionism.  
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InWUodXcWion 
In most contemporary computer science classes the computer is used to put children through their 
paces, to provide exercises of an appropriate level of difficulty, and to dispense information. This 
sentence, which we believe accurately describes today’s K-12 computer science landscape, also 
paraphrases the first sentence of Mindstorms (1980). Papert critiques the status quo of schooling 
and articulates a different vision of computer-supported education. Today, as computer science 
starts to be taken up broadly as a K-12 discipline, the leading implementations are vulnerable to 
the same critique which helped to justify teaching computer science in the first place. 
 This irony is the starting point for this study, in which we report on the design of a 
Constructionist computer science course which is currently being implemented in a high school in 
Hong Kong. This study is part of a larger research project whose goal is to demonstrate what 
might be achievable in one year of a Constructionist computer science course and to document 
how it comes about. As exploratory research, the goal is not to claim that the design of this course 
could be or should be implemented at other schools, particularly at schools with access to different 
resources. Nor is the goal to criticize projects like Hour of Code (Code.org), which prioritize 
expanded participation over any particular learning goals, and which are designed to scale up 
across existing conditions at schools around the world. However, we are concerned that in making 
compromises to scale up computer science education, current manifestations of K-12 computer 
science may have given up too quickly on the ambitious epistemological goals articulated by 
Constructionism.  
 In this paper, we surface three central themes of Constructionism, frame a design goal 
around each, and briefly consider several existing introductory computer science courses with 
respect to these goals. We then describe the context and design of an introductory ninth-grade 
computer science course, and close by grounding this design in an ongoing research project and 
considering how that project might help shape our vision of for K-12 computer science.  

BackgUoXnd 
In this section, we articulate three themes of Constructionism which frame our design goals.  

Computer cultures 
Constructionism is rooted in the belief that knowledge does not exist in a vacuum but rather lives 
and grows in situated context (Ackermann, 2001). Powerful thinking  with computers requires a 
computer culture in which to participate. A computer culture provides ideas and media--tools to 
think with--as well as norms and practices to guide participation, define the community, and shore 
up the identities of participants. Just as Piaget’s constructivism was rooted in the relationship 
between an organism and its environment (Fosnot & Perry, 1996), computer science is something 
people do within a computer culture.  
 Almost forty years ago, Papert imagined “the computer cultures that may develop 
everywhere in the next decades” (Papert, 1980, p. 20) Today, our environment is profoundly 
shaped by, made from, and mediated by, computers. We live in digital worlds which permeate, 
augment, and co-constitute what we perceive to be the real world. Youth growing up today almost 
universally participate in digital media, extensively and in important ways (Anderson & Jiang, 
2018). These activities constitute rich and diverse computer cultures. They are to varying degrees 
emergent, viral, and engineered. Even though powerful ideas from computer science do not 
always flourish in these cultures, we propose that such cultures should be considered funds of 
knowledge (Moll, Amanti, Neff, & Gonzalez, 1992) which can be employed in the practice of 
constructing knowledge.  

Material intelligence 
Papert suggests that one reason computer cultures had not yet emerged in the late twentieth 
century was a relative “poverty in materials… from which intellectual structures can be built” (1980, 
p. 20). While our built environment and cultural practices offer innumerable opportunities to 
engage with and benefit from algebra and geometry, the claim was that fewer such learning 
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opportunities existed for the powerful ideas of computing. This is certainly no longer the case. The 
computational infrastructure mediating our digital worlds is a leaky abstraction which constantly 
exposes the algorithms and computational properties with which it is designed, providing 
innumerable opportunities to encounter computational phenomena and to become powerful by 
making use of computational ideas. For example, the everyday practice of navigating social media 
involves informal social network analysis. Managing identities online requires constantly thinking 
in layers across interfaces. The essence of a meme relies on the practice of abstraction. 
 At the same time, many forms of work are now characterized by specialized computational 
media and practices in which computers are used intentionally and metacognitively as tools for 
thinking about thinking. diSessa refers to the ability to interface with a representational medium, 
for social practices or toward cognitive ends, as “material intelligence.” Using computers as tools 
for thinking--and for thinking about thinking-- was of central importance to Papert. Wilensky (2010) 
uses the term “restructurations” to describe how knowledge can be reformulated via new 
representational forms which make different properties available. The protean nature of computers 
is powerful not just because they can take on many different forms to meet our existing needs (as 
in an app store), but because they support richer understandings of the structure of problems. 

Liberatory pedagogy 
Finally, we see Constructionism through a critical pedagogy lens, where education is a political 
act and computers could function as agents of emancipation (Blikstein, 2008).  Instead of 
accepting an education “where children are segregated from society and segregated among 
themselves by age and put through a curriculum,” Papert argued in agreement with Paulo Freire 
for a “problem-posing education” that encouraged students to approach important problems 
around themselves and in their worlds (Papert & Freire, n.d.). Each of the previous two themes 
contributes to a pedagogy of liberation, which we analyze in terms of Berlin’s (1969) positive 
(freedom to) and negative liberty (freedom from).  
 An education grounded in computer cultures could be particularly well-suited to address 
students’ agency of self-determination by connecting to their existing funds of knowledge 
(Rodriguez, 2013). Students (along with teachers, parents, and community members) must be 
treated as agents in the classroom with equal power to construct knowledge. To do this, teachers 
must understand students’ backgrounds and cultural practices as wealths of experience which 
can be employed in the practice of constructing knowledge. Such a pedagogy promotes positive 
liberty by developing a classroom space where students can develop their identities while forming 
relationships with powerful ideas. These relationships contribute to learners’ agency by expanding 
what they can do and understand, and by increasing their ability to contribute their own thoughts, 
ideas, or extensions of ideas to a conceptual domain (Boaler, 2003). 
 Developing material intelligence with computing could be particularly effective in supporting 
negative liberty, or freedom from oppression. Beyond defensively learning how to keep oneself 
safe online, learning how computing works could support youth in understanding how computation 
shapes our ideas about the world and our place in it, a computational analogy to Freire and 
Macedo's “reading the word and reading the world” (1998). Just as Freire connects a reading of 
words to a writing of words, we can connect understanding the impact of technology to creating 
technology that has an impact.  As the negative social consequences of computing become more 
apparent in our world and joining the computing workforce perhaps loses some of its idealistic 
luster, a critical understanding of computer science may become an essential tool in utilizing 
technology to resist and deconstruct oppression. 

Comparison with existing approaches 
These three Constructionist themes can help structure the design space of possible ways of 
teaching introductory computer science courses (Nelson & Ko, 2018). In this section we briefly 
position several other projects with respect to the three themes.  
 First, Hour of Code’s goal is “broad participation across gender and ethnic and 
socioeconomic groups” (Code.org)  Toward this end Hour of Code is designed to be self-
contained, requiring no teacher or community and usable on a wide variety of devices (or even 
without a computer at all). The scripted, puzzle-like activities are embedded in cultural worlds 
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which might be familiar and appealing to a wide variety of students (e.g. programming sprites to 
dance to a soundtrack), and guide users toward understanding how to control those worlds using 
block-based programming. If Hour of Code succeeds at connecting with youth cultures (including 
informal computer cultures), the cost is very little development of material intelligence. The tools 
provided obviously cannot be used to make anything real. (Even in open-ended environments 
such as Scratch, students have trouble viewing their programming as real or building on their 
experience for future learning.) If Hour of Code has liberatory potential, it is in changing attitudes 
toward future computer science learning opportunities.  
 If Hour of Code can be dropped into any classroom, Exploring Computer Science (ECS) is 
a full introductory computer science curriculum supported by professional development (Goode & 
Margolis, 2011). Like Hour of Code, ECS is focused on broadening participation and stresses 
“ease of implementation for teachers and maximal engagement for students,” but ECS is also 
focused on developing computer science knowledge (About ECS). ECS prioritizes computational 
thinking over programming; much of the curriculum is focused on working with computational 
problems and ideas in a social context rather than on implementing working programs. Therefore, 
we view ECS as being highly committed to building computing cultures while not emphasizing as 
much material intelligence. ECS could be seen as liberatory both in its focus on providing students 
access into the world of computer science, and in cultivating agency within the computing cultures 
it supports.  
 Finally, Beauty and Joy of Computing (BJC) is an introductory computer science curriculum 
which contrasts with ECS in its heavy emphasis on programming (Harvey, 2012). BJC is taught in 
Snap!, a block-based variant of Scratch which supports more explicit restructuration of 
mathematical ideas. While BJC also provides pedagogical support for diverse learners, in 
comparison with ECS its emphasis is more on powerful mathematical and computational ideas 
than it is on connecting to students’ existing cultures or using computing in those worlds. As its 
name suggests, BJC stresses the liberatory potential of the ideas themselves. Like Hour of Code 
and ECS, BJC is taught in a block-based language which prioritizes accessibility over the ability 
to create personally-meaningful projects in domains already important to students.  

DeVign of Whe CoXUVe 
These examples of existing computer science courses suggest a general tradeoff between 
providing broad access to computer cultures and engaging deeply with material intelligence. Our 
broader research goal is to question whether this tradeoff is necessary. By reconfiguring the 
relationship between computer cultures and material intelligence, we hope to show that these 
goals can be mutually supportive and can result in new liberatory possibilities.  

Context 
The research and development of this course takes place at a bilingual private school in Hong 
Kong during the 2019-2020 school year. A teaching team of three instructors, two of which are 
associated with the university-based research group,  works with twenty-eight Grade 9 students, 
divided among 2 classes. For the majority of the students, this course is their first exposure to 
computer science. For the school, this is the first iteration of a Constructionist computer science 
course. Notably, the material and financial resources available in this setting made low student-
to-teacher ratios, highly-qualified teachers, and one-to-one computing possible. 
 At the same time, the students, the course, and the school face pressure to succeed in the 
context of both the Chinese and the overseas educational systems (notably, U.S. and U.K.). They 
are under pressure to demonstrate success through grades, AP, IB scores,  college admission, 
and have historically relied on extrinsic motivation to achieve this performance. Thus, while the 
context of this research provides atypical access to resources, it also provides stringent demands 
that a Constructionist computer science class be able to demonstrate success on traditional terms 
as well as its own.  
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Overview  
In designing the course, the central goal is to create a rich, diverse community of people making 
things with code, through which they can develop personal relationships with powerful ideas. The 
course is designed to help all students learn to interact with code as an expressive, evocative 
medium, which helps to structure thought. At the same time, the course is designed to support 
computational literacy, connecting with students’ existing ways of reading and writing. 
 The course is composed of five curriculum units intended to introduce students to various 
computing domains and programming paradigms, while supporting progressive growth in 
particular skills. Each unit introduces new skills and concepts, and then devotes significant time 
to an open-ended student project in a real-world computing domain through which they will 
encounter programming challenges in authentic contexts and, with teacher support, learn what 
they need to solve them.  

Table 1. Summary of curriculum units.  
Topic Project Paradigm 

Turtle drawing A drawing (optionally using 
makerspace to etch/cut) 

Imperative 

Data science Data-based argument about our digital 
worlds 

Functional 

Games Create a game Object-oriented 
Networking Create a networked microservice Reactive 
Web applications Create a web application for real-world 

users 
Human-computer interaction, 
collaboration on larger system 

 

Each unit consists of labs (for student-driven exploration), mini-lessons (for just-in-time teaching), 
assignments (for review and practice of concepts), and projects (for open-ended creation). Below, 
we outline three central design goals, each attached to the aforementioned themes of 
Constructionism, and provide examples of specific decisions in our course design that align with 
our goals. In practice, we cannot separate the themes of Constructionism into three distinct design 
decisions, but we structure below accordingly for clarity. 

Let students drive liberatory pedagogy 
We dedicate most of our class time to student-directed engagement with course materials (called 
labs). Not unlike science labs where researchers plan and conduct experiments, computer science 
labs introduce groups of students to concepts, practices, and tools in computer science by giving 
them project-based problems to solve. Such a problem-posing education necessitates learning by 
doing. Consider the following examples:   
 Navigating the Terminal. In their first lab, students learned to navigate the terminal by 
exploring a directory with text files, subdirectories, and python files that played like an adventure 
game when students used the terminal commands to run the programs, change directories, read 
the text files, and other basic command-line tasks. Importantly, students were not told what to 
learn or memorize. Instead, students were provided with simplified documentation of various 
commands, and they chose to learn the terminal commands that they felt were most important or 
necessary in the moment.  
 Introduction to Loops and Lists. In this lab, students used print statements, lists, and loops 
for the first time. Rather than read about the syntax of a for-loop or why it may be useful, students 
experienced the concept for themselves. They explored a list of subway stops in their district and 
wrote different loops to traverse through the stops. Notably, we never provide answer keys to the 
labs or assignments. This design decision shows students that there is no one correct approach 
to a computer science problem; instead, we encourage students to consider and share multiple 
solutions in their groups.  
 The teaching team relies on a collection of norms for interactions in a student-driven class 
(see Figure 1). As instructors, we minimize our time in front of the class. Sometimes, we offer 
guidance “mini-lessons” about concepts to the entire class before they begin the lab. More 
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frequently,  this manifests in holding “mini-lessons” for individuals or small groups of students in 
the moment, when they get stuck on a lab or assignment. When one student grasps a concept or 
resolves a bug, we invite them to act as “student experts” and teach their peers. In this way, 
students drive the knowledge creation in the classroom and become agents of meaning-making. 
 

                  

Figure 1. Process and norms of getting help including requesting a help session, doing a help session, 
and sharing knowledge after a help session. 

Develop material intelligence using practical tools with high ceilings. 
In designing the course, we paid particular attention to the tools we chose for our students to use 
to engage with computation. We were particularly interested in the Constructionist idea that 
powerful tools help students develop deep connections to a conceptual domain. We decided to 
use tools which we believed would increase students’ material intelligence, their agency to engage 
with computation. We decided to use a UNIX/Linux terminal user interface, Atom, and Python as 
the development tools for our class (Figure 2). Importantly, each of these tools provides an open-
ended development experience with very high ceilings on what they can be used to create. 
Further, these tools are all regularly used in computer science practices from personal to academic 
to industry, allowing our students’ use of the tools to interface with broader practices of computing. 
 This approach is far from the sandboxed strategy adopted by many computer science 
curricula, and required significant up-front setup, downloading and configuring software and 
development environments. The tradeoff is that students are now able to powerfully use their 
computers as tools for general purpose computing in this class and beyond. In the first weeks of 
the course, students learn the basics of how to navigate the file system using a command line 
interface, how to create and edit Python files using the text editor, execute and debug them from 
the command line. Soon thereafter, students were using version control (git) to clone starter 
projects, track their own progress, reflect on their process (using a customized template for commit 
messages), and dialogue with teachers as they revise their work.  
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Figure 2. Visualization of tools and workflow for code development in our class: find/open/create files with 
Terminal, write Python scripts as files with Atom, use Terminal to run Python scripts.  

Implement personally meaningful projects draw in students’ computer cultures 
Finally, we designed our class to rely on students’ own experiences with computers while 
expanding their ability to understand and interact with their digital worlds. We feel that the most 
effective way to engage students with the “underlying representational form” (diSessa, 2001, pg. 
24) of computation is to ask students to draw in elements of their own computer cultures. To do 
this, we spend a significant amount of time at the end of each unit supporting students as they 
develop a project which utilizes the tools and concepts explored in the unit. The goal of this project 
is always to create something personally meaningful: a piece of art, a data-informed answer to a 
question about their worlds, a game inspired by their own favorite game. Some of these projects 
are individual asking students to draw from their independent experiences while others are group 
projects asking students to mesh their computer cultures with the computer cultures of others. 
Further, these projects often expect students to build upon the work of others, hacking and 
remixing code for their own purposes. 
 This approach to projects has been particularly generative in creating space for students’ 
computer cultures in our classroom. At the end of our Turtle drawing unit, many students’ projects 
featured their own computer cultures. One student created her own version of a meme showcasing 
her efforts while another student invoked his computer culture by integrating Minecraft characters 
into his drawing (Figure 3). 
 
Students’ engagement with personally meaningful projects also allows students to connect other 
literacies to their computer cultures. Many students’ projects connected outside identities, 
interests, and skills to the classroom computer culture, potentially enriching both (Figure 4). 
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Figure 3. Students using elements of their computer cultures, such as memes (left) and Minecraft (right), 
as inspiration for their projects. 

 

Figure 4. Students using elements of their cultural identities, such as their Hong Kong heritage (left) and 
Korean pop music interests (right), as inspiration for their projects. 

Future Considerations 
As we finish the first semester of the course, we reach a point where we can share preliminary 
results, limitations, and next steps. We are currently conducting research to substantiate the initial 
positive results we see from our perspective as reflective practitioners. Our intention is to revise 
and then share the curriculum broadly and to learn about what kinds of support will be needed 
when it is taught at other schools. Because our choice of tools requires access to lower levels of 
the computer, it would not be possible on a phone, tablet, or browser-based laptop. The hardware 
required may make this curriculum less accessible and scalable for other schools. It also requires 
significant human resources as teachers will need to familiarize themselves with these tools, which 
are more complex than other beginner-friendly platforms. The teacher must also feel human and 
disciplinary agency when using the tools. For many schools, this may present a difficulty if the 
computer science teacher is not a computer scientist by training. 
 Even though we have passed up interfaces designed for accessibility such as web-based 
and block-based environments, initial results suggest that all of our students have been able to 
access and participate in working with computational ideas using a powerful representational 
medium. The fact that we are using tools common to real-world formal and informal computing 
contexts also provides numerous ancillary benefits. Students can also begin to develop practices 
of using real-world resources such as man pages, library documentation, and support forums. 
Student curiosity about how things work is often rewarded by excursions into important 
phenomena ranging from their operating systems to random number generation to the layers of 
abstraction supporting user interfaces.  

ConclXVion: WhaW kind of CS foU all? 
As computer science has gained recognition as a mainstream K-12 subject in school, the question 
of what kind of computer science we want has also begun to gain belated traction. Several recent 
frameworks have articulated different motivations for teaching computer science (Blikstein, 2018), 
visions for the field (Santo, Vogel, & Ching, 2019), and theoretical framings (Kafai, Proctor, & Lui, 
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2019). However, the dominant approaches in practice make compromises between the goals of 
broadly accessible computer cultures, deep engagement with material intelligence, and liberatory 
pedagogy. This paper develops the design rationale for a course and a research project seeking 
to recover the original spirit of a Constructionist approach to computer science, and in doing so, 
to question whether these goals could be mutually supportive rather than at each others’ expense. 
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