
Defining and Designing Computer Science Education in a K12
Public School District

Chris Proctor∗
Stanford University

Stanford, CA
cproctor@stanford.edu

Maxwell Bigman†
Harvard University
Cambridge, MA

mbigman@gse.harvard.edu

Paulo Blikstein
Columbia University

New York, NY
paulob@tc.columbia.edu

ABSTRACT
Computer science is poised to become a core discipline in K12
education, however there are unresolved tensions between the defi-
nitions and purposes of computer science and public education. This
study’s goal is to explore how logistical and conceptual challenges
emerge while designing a comprehensive K12 computer science pro-
gram in a public school district. While the policy infrastructure for
K12 computer science education is rapidly developing, few districts
have yet implemented computer science as a core discipline in their
K12 programs and very little research has explored the challenges
involved in putting ideas into practice. This study reports on a com-
mittee designing a comprehensive K12 computer science education
program at a small public school district in California. Through a
grounded-theory qualitative interpretation of committee-member
interviews and board meeting transcripts, we surfaced three themes
which were the primary points of tension: how computer science
is defined, how it ought to be taught, and what process ought to
be used to answer these questions. Grounding these tensions in
the academic discourse on K12 computer science education, this
study offers recommendations to other districts designing compre-
hensive computer science education and suggests future directions
of computer science education research that will be most useful to
stakeholders of these processes.

CCS CONCEPTS
• Social and professional topics → Computer science edu-
cation; Computing literacy; K-12 education; Computational
thinking;
ACM Reference Format:
Chris Proctor, Maxwell Bigman, and Paulo Blikstein. 2019. Defining and
Designing Computer Science Education in a K12 Public School District.
In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA.
ACM, NewYork, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/3287324.
3287440

∗Equal first author
†Equal first author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287440

1 INTRODUCTION
Even though computers shape our political, economic, and social
lives, K12 education in the United States does not include compre-
hensive computer science. When they are available at all, opportu-
nities to learn computer science are marginal and piecemeal. AP
CS enrolls mostly high-performing, college-bound students. Some
students learn programming in extracurricular activities like ro-
botics and maker spaces and clubs. Equity-focused interventions
such as Exploring Computer Science [16] and Hour of Code have
made progress in exposing more students to computer science. A
thriving economy of educational technologies and out-of-school
learning opportunities has emerged for those who can afford them.
Computation rivals textual literacy in societal significance, but our
schools do not systematically prepare children to participate as
workers or citizens.

The computer science education community has made substan-
tial progress on developing the infrastructure needed for compre-
hensive K12 CS education. Several CS curriculum standards have
been published [13, 27]. The K-12 CS Framework [1] united the
major stakeholders to produce a document intended as guidance
to those developing standards and curricula. Various states have
adopted existing computer science standards while others, includ-
ing California and New York, are developing their own. At the same
time, states are developing teacher credentialing standards [18] and
teacher preparation programs to train computer science teachers.

As this infrastructure is still emerging in the United States, there
are few examples of K12 CS program implementations, and very lit-
tle research has been published on them. Several large urban school
districts, including New York [29], San Francisco [28], and Los An-
geles [19], are in the process of implementing K12 CS. The initial
evaluation report on New York’s CS4All initiative emphasizes the
need for schools to develop local visions for computer science [29],
and calls for case studies of school-based implementations (p. 55).
We have been unable to find case studies documenting the process
of designing and implementing K12 CS at smaller school districts.
As other school districts consider making computer science a core
K12 subject area, reports of prior experience will be valuable.

This case study of a small suburban school district’s three-year
process of designing a K12 CS program addresses this gap in re-
search. Our analysis of interviews with committee members and
presentations to the board of education surfaced three themeswhich
were the focus of discussion and conflict in the committee and the
broader community:

(1) What is the district’s vision for computer science?
(2) How should the district’s K12 CS program be implemented

and taught?

Paper Session: Curriculum Issues 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

314

https://doi.org/10.1145/3287324.3287440
https://doi.org/10.1145/3287324.3287440
https://doi.org/10.1145/3287324.3287440
Chris Proctor

(3) What process should be used to answer these questions (and
who should participate)?

This study characterizes the development of each theme, grounds
each in the broader discourse of computer science education, and
offers recommendations for how other communities can engage
productively with them. This study may be of interest to stakehold-
ers of other school districts designing computer science programs,
as well as academics studying teaching and learning in K12 CS.
Stakeholders in other school districts–whether they are designing
district-wide computer science programs or local implementations
within large districts–may recognize the themes reported in this
case study, and be able to avoid some of the conflict encountered
in this district’s process. The committee which is the focus of this
study relied on existing research, but found it necessary to build
their own shared understanding of what computer science is and
how it should be taught. For researchers studying teaching and
learning in computer science, the opportunity to see how academic
discourse is taken up by practitioners may inform future research.

2 BACKGROUND
There is a substantial body of work considering teaching and learn-
ing in K12 CS. Although this study uses a grounded-theory ap-
proach [10] to surface the ways in which committee members
came to understand computer science, this section summarizes
the research which was the context for the committee’s work and
which frames the conversation to which this study contributes.
Barr & Stephenson [3] argue for several ways the computer science
education research community can contribute to the design and
implementation of K12 programs. These include each of the ma-
jor themes, listed above, which emerged from the interviews with
committee members and board meeting transcripts.

Barr & Stephenson [3] emphasize the importance of uniting be-
hind an "operational definition" (p. 49) of what is to be taught1.
Each of the computer science standards documents has given a
definition of computer science, and has acknowledged the difficulty
of defining a young and dynamic field. Strategies for defining com-
puter science fall into three broad groups. The first is identifying
the fundamental ideas [8] or essential questions [30] at the heart of
a field. This approach has been particularly attractive for computer
science, which can be seen as a way of working directly with pow-
erful ideas and thinking about thinking [22]. A second approach
considers a field not as an abstract body of knowledge, but as a
set of practices enacted within a community. To borrow a phrase
from Roy Pea, computer science is what computer scientists do. An
attractive feature of this framing is that it acknowledges cognition
as situated [7] in the context of particular identities, cultures, tools,
and spaces which can be important factors in equitable participa-
tion [4, 20, 21]. The K-12 CS Framework [1] and the revised CSTA
standards [13] each define computer science in terms of concepts
and practices. A third, more pragmatic, approach defines a field in
terms of competencies. What exactly can experts do? Denning [12],
for example, argues that computational thinking is a poorly-defined
construct responsible for much confusion in K12 CS education, and

1Barr & Stephenson address computer science but focus on computational thinking.
As we understand the article, computational thinking is suggested as a candidate for
an operational definition of K12 computer science.

that we would do better to focus on clearly-measurable outcomes
aligned with the kinds of tasks computer scientists do in their daily
work.

In considering how a computer science program ought to be im-
plemented and taught, the computer science education community
has sometimes emphasized interaction with computers over peda-
gogy. This is understandable, as thinking with computers is a core
part of computer science [2], and many computer scientists have
had profound personal experiences doing so. Computer science
education pioneers such as Papert [22] valorized programming as
a highly generative learning space, and software such as Scratch
[24] has introduced millions of children to programming. Learning
directly from computers remains an appealing option for scaling
computer science education: Hour of Code is structured as student-
guided tutorials with minimal peer or teacher interaction with no
teacher expertise required [11]. However, research on supporting
the development of interest and learners’ identities in the face of
negative stereotypes has shown the importance of supportive com-
munities and personal relationships [4, 20, 21]. This research has
spurred development of courses such as Exploring Computer Sci-
ence [16], which revealed some of the challenges and opportunities
involved with implementing computer science courses in a high
school setting.

While the computer science education community has advo-
cated for both top-down and bottom-up approaches, current K12
CS implementation work largely addresses policymakers and envi-
sions centralized expert design being disseminated to schools and
teachers for implementation via standards, teacher credentialing,
and professional development. This may be driven by the ease with
which digital resources can be distributed and by the corporate
decision-making structures which have dominated education for
much of the past century [9]. The alternative, distributed participa-
tory design rooted in the values and identity of particular school
communities, will become more feasible once there is a larger corps
of K12 CS teachers to help lead the process. One of the findings
of this study is the limits of scaling centralized decision-making:
local stakeholders may need to construct shared understandings of
fundamental questions about computer science.

3 METHODS
This study was conducted at a small wealthy suburban school dis-
trict in California in which a committee composed of students,
parents, teachers, and school leaders has spent the last three years
designing a K12 CS program. The committee also generated imple-
mentation proposals, addressing questions such as how computer
science should be integrated into elementary, middle, and high
school, whether computer science should be a stand-alone course
or integrated into other subject areas, whether there should be a
computer science department, and whether a computer science
course should be a graduation requirement. The district is unusual
in its level of affluence and social capital. The high schools already
offer numerous computer science courses, and several of the com-
mittee members have participated in K12 CS education leadership
in various capacities.

Paper Session: Curriculum Issues 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

315

Table 1: Frequency of qualitative codes in committee mem-
ber interviews and board meeting transcripts

Code Count
Theme 1: Definition 392

competencies 29
concepts 29
defining_education 46
framings 49
importance_of_defining_cs 8
practices 71
rationales 119

Theme 2: Curriculum and instruction 578
curriculum 394
implementation 45
pedagogy 139

Theme 3: Process 486
authorities 92
committee_participation 49
committee_roles 33
cs_inclusion 33
decision_making_structure 24
district_leadership 24
identity 199
politics 31

The texts analyzed in this study include semi-structured inter-
views with 9 core committee members and transcripts from presen-
tations and public discussions at the district’s Board of Education
meetings in May 2017 and May 2018. The interviewees included
parents, teachers, and school and district leaders. We used the com-
mittee’s biweekly meeting minutes, written correspondence, and
process documents to support our analysis.

We used a grounded theory approach, allowing themes to emerge
from an iterative process of open coding. Because our goal was to
understand how participants understood and framed the issues, our
coding was primarily in vivo [25], noting how language is used in
individual and social meaning-making, and in persuasive rhetoric.
As we organized codes into thematic categories, we wrote analytical
memos documenting our thinking and connecting the emergent
themes to existing bodies of research [17]. The findings we present
in the next section are supported by analysis of quotations and by
patterns of codes in the transcripts. In subsequent work, we plan to
deepen this analysis by discussing our findings with stakeholders
and outside experts.

4 RESULTS
Table 1 shows the top two levels of the tree of qualitative codes
which resulted from our iterative process of coding, analytical
writing, and categorizing codes. The distribution of codes provides
an overview of what committee member and participants in Board
of Education meetings discussed, and is the basis of our analysis.
The rest of this section analyzes each of the three top-level themes
in turn.

4.1 What is computer science?
The first major theme was the committee’s attempt to define com-
puter science. The committee members unanimously agreed that
computer science is important (though this was contested by some
students and teachers at Board of Education meetings), but they
invoked different rationales for why it is important. The most com-
mon rationales given were equity (52), early exposure for later
interest development (21), economic opportunities (21), and a sense
that computational literacy has become a skill necessary for every-
day life or digital citizenship (17). Equity was stressed by the Board
of Education and public commenters (37), and less frequently by
the committee members (15). These rationales for the importance
of computer science closely match those articulated by experts in
the computer science education community[6].

The members had fundamental disagreements about what consti-
tutes computer science and felt that their inability to agree on one
definition blocked their effectiveness. One member, who has done
graduate work in computer science, worked in the field, and par-
ticipated in a nation-wide computer science standards committee,
said, "everyone at some level was ignorant about what computer
science is. So it’s hard for us to define it. It’s hard for us to know
what it is. Only after being on the committee was I able to refine
what I consider to be a pretty reasonable definition." When asked
for individual definitions of computer science, committee members
often referred to computing practices such as programming, compu-
tational thinking, and collaboration (100) and less frequently to core
computing concepts such as abstraction, decomposition, and hard-
ware (19). They also positioned computer science as part of broader
concepts, defining it as part of what it means to be a well-educated
adult today (30) and framing computer science metaphorically (47),
for example as a language or as a way of using tools.

One particularly pronounced fault line was between committee
members focused on bringing more students into computer science
and those focused on developing students to their full potential.
There need not be any intrinsic contradiction between inclusion and
rigor, but differences in how each camp construed computer science
made it difficult for them to understand and support each others’
priorities. Those committee members who focused on inclusion
overwhelmingly described computer science in terms of practices
and developing the conditions under which beginners would be
willing and able to participate. One teacher, describing a successful
computer science lesson, reported, "every single child was not only
super engaged, but it was the creative aspect, the problem solving
and the teamwork that went with it and all of these other skills that
I noticed. And that made learning more fun, of course. They were
learning a lot." The committee members emphasizing rigor talked
in terms of competencies such as programming and solving mathe-
matical problems using the big ideas of computer science. A teacher
taking this perspective argued that de-emphasizing programming
(for example, through "unplugged" activities [5]) is a disservice to
students: "If you’re teaching origami in computer science class and
some guy out in [a wealthy city] is teaching kids how to actually
write programs, I’ve got very little doubt which kid is likely to be
in better shape coming out of those two classes in terms of being
able to function well at the next level. I think it’s creating a chasm

Paper Session: Curriculum Issues 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

316

between the haves and the have-nots." This disagreement is rooted
in different conceptions of what it means to do computer science.

This epistemological tension is paralleled in the academic debate
over computational thinking [31], even though the term was used
only 12 times in our corpus. Over the last decade, proponents of
computational thinking have argued for a practice-focused vision of
computer science, often including collaboration, creativity, and the
construction of identities and communities where computational
practices can emerge. Computational thinking has been useful to
those arguing for teaching computer science at the elementary level,
for interdisciplinary computer science, and as a lens on inclusion
and equity. Others, likely in agreement with the teacher quoted in
the previous paragraph, feel that computer science, and a useful
definition of computational thinking, ought to be more narrowly
defined, focusing on the application of core computational ideas
through programming [12, 23]. Too heavy a reliance on computer
science practices risks obscuring the powerful ideas that make the
field transformative, empowering, and worth teaching.

The K12 CS framework takes an inclusive position, describing
computer science in terms of concepts and practices. Four of the
seven practices are identified as computational thinking, and they
are privileged as "the heart of the computer science practices" (p.
67) While participants reported having read and discussed the stan-
dards documents cited above, they seldom referred to them while
defining computer science. It might have benefitted the commit-
tee to consider the importance of practices and concepts in turn,
as presented in the K12 framework. However, documents such as
the K12 framework might also be more helpful if they voiced the
epistemological tensions within the field, rather than attempting to
resolve them in a unified front. Divergent definitions of computer
science were an important source of tension of the committee, but
they are not the only explanation for the divide described above.
There were also interpersonal tensions rooted in how committee
members construct identities as computer scientists and position
themselves as experts. We return to issues of identity and power in
the third major theme.

4.2 How should computer science be taught?
The second major theme that emerged from our research centered
on the question of how computer science should be taught. The
committee agreed that computational thinking should be an in-
terdisciplinary strand woven into the curriculum in elementary
and middle school, with specialists supporting classroom teachers.
At the elementary level, the committee proposed incorporating
unplugged activities [5] and robots into interdisciplinary lessons
due to concerns about limiting students’ screen time. At the middle
school level, the committee proposed replacing discrete units in
the math and science curriculum with computational approaches.
The committee was overwhelmingly in favor of making one se-
mester of computer science a graduation requirement, with 69%
of the members supporting it, and only 15% against the idea (the
other members abstained or tried to find a third way). One veteran
computer science teacher cited how "every year we are losing more
700 students to computer science illiteracy and if we could just
get a basic computer science class going for everyone...that hem-
orrhaging of knowledge in some sense could be evaded." Another

computer science teacher said, "I’m definitely on the side of a re-
quirement, if every student is forced into it, it may not have the
effect it had on me, where you just throw your whole self into it
and get excited about it, but at least it presents the opportunity."
While there was broad support for a graduation requirement, there
was substantial disagreement about what sort of course should be
required. Mirroring the two different understandings of computer
science, there was a group emphasizing rigor, and another group
focused on exposure. The former group was interested in the AP
Computer Science Principles course, citing "the number of people
who have worked hard on that, including people from the univer-
sity level," while the latter group was interested in emphasizing the
broad applications of computer science in an inclusive manner. The
committee ultimately did not reach an agreement on the nature of
the required course, as they focused their efforts on first securing
the graduation requirement.

The committee’s proposal offered two potential paths to add
the computer science requirement: by replacing another gradua-
tion requirement, or by adding a new requirement and thereby
reducing the number of electives available to students. At the com-
mittee’s presentation to the Board of Education in 2018, they re-
ceived strong pushback from teachers from other departments,
students, and some of the Board members. Two members of the
History-Social Studies department presented at the Board meet-
ing. They emphasized the importance of their courses, expressed
frustration at not hearing about the committee’s work earlier and
questioned why every student needed computer science if they
did not "desire to pursue technologies and system development."
Given the nature of high school graduation requirements, adding
any new requirements (computer science or otherwise) inherently
is a zero-sum game. Goode & Margolis [16] came to a similar con-
clusion when trying to integrate their Exploring Computer science
curriculum: "students’ course schedules are so impacted by gradua-
tion and college-preparatory requirements that they are often not
able to take any non college-preparatory electives." Debates about
curricular requirements were often oriented toward the state’s re-
quirements and a possible future computer science requirement.

The students who spoke against the requirement cited the the
overwhelming demands of the existing requirements, and the lim-
ited choice in their schedules. One student summed up a survey
of his peers: "they’re less against the idea of teaching computer
science than they are with the idea of more requirements," instead
suggesting that the district might "loosen up our curriculum and
rethink that idea of what students must know, because right now
we’re all working under a system that’s collapsing under its own
weight." The second question of student autonomy and choice sug-
gests a much bigger question in education: should students be able
to choose their courses, or should districts determine what courses
students need to take? On the other hand, one Board member ar-
gued for a requirement from an equity perspective: "if we believe
that computer science is a critical skill for being a citizen in the
modern world, then... we really can’t accept a situation in which our
female students and the underrepresented minority students are not
participating in that at the same levels as other students. That really
should be unacceptable to us, and I think a graduation requirement
is a way of addressing that." Indeed, other implementation efforts
have concluded that access is not enough to broaden participation

Paper Session: Curriculum Issues 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

317

[15]. Furthermore, they suggest that an interdisciplnary approach
to computer science education will not address the need to develop
equitable practices. In combination with inclusive content and ped-
agogy which actively confronts negative stereotypes, widespread
participation may ultimately depend on requiring students to take
at least an introductory course [14, 15].

The debates about the nature of the graduation requirement
suggests that it is important to include a wide variety of key stake-
holders and incorporate their voices. Navigating the complexities of
implementing computer science is inevitably situated in a political
environment that goes beyond the discipline itself, and forces a
district to consider major questions about requirements and goals.
Behind these more immediate issues is the reality that the basic
structure of secondary education has not changed in over a cen-
tury in the US, and may be due for an overhaul. Our society’s shift
to computation as a medium of literacy would be well-suited as
the basis of such a pivot, but waiting on such an overhaul before
introducing computer science would not be an expedient strategy.

4.3 What process should be used to answer
these questions?

The third major theme which emerged from our analysis was the
question of how the design process ought to be conducted and who
ought to participate. During interviews, committee members en-
thusiastically described how their identities as computer scientists
developed. Their understandings of computer science were deeply
grounded in these histories. The committee members who were
most outspoken advocates for equitable participation had past ex-
perience with exclusionary stereotypes related to computer science
and the factors which can support equitable participation. These
included discussions of gender (31), race (7), social class (6), affect
toward computer science (21), mentorship (4), and identities such
as nerds (9). One teacher, who has decades of experience teaching
math and computer science, described her initial interest in com-
puter science: "It was just what you would expect. It was nerdy kids
and nerdy me and very playful, very advanced math kind of kids
and I kept wondering why we weren’t getting more girls because I
thought it was fun and I was a girl." She acknowledges the reality of
disproportionately male participation and the stereotypes reinforc-
ing this, while also offering herself as a counterexample to these
stereotypes. From this teacher’s perspective, the challenge is to let
girls be nerdy too, or to let computer science be defined as playful,
something other than just nerdy. No participants disagreed that
culture and identity are important, but some did not describe their
own development in these terms. Instead, their accounts empha-
size the schools where they studied, the roles they occupied, and
frequently hands-on opportunities with computers. Their equity-
oriented work focused on outreach, trying to get underrepresented
groups to enroll in the rigorous computer science courses, rather
than redesigning the courses. To the extent that these teachers use
their own histories as a guide, the link between their histories and
the way they understand computer science is unsurprising.

When committee members positioned themselves as experts
on computer science, they often referred to their professional or
academic experience. However, these experiences did not automat-
ically confer social capital. Some committee members presumed

upon their expertise to make their claims authoritative. Others,
despite years of professional experience and academic background,
did not use their experience to make their voices more powerful.
For example, one teacher and committee member said, "I worked
for 15 years in the tech industry before I decided to teach elemen-
tary schools... My background is engineering but not computer
science, though the work I was doing was programming. And so
after fifteen years in the tech industry, I lost my job, I went back to
school, I did my multiple subject credential, and I started teaching
as an elementary school teacher." Throughout her interview, she
supported her perspective on how computer science ought to be
taught with detailed accounts of students’ classroom experience,
but avoided making general authoritative statements about what is
best.

In some cases, the construction of expertise was explicitly about
power and whose voice counts. One male teacher explicitly ex-
cluded the expertise of the women quoted in the previous para-
graphs: "It’s tough because, you know, I felt like [othermale teacher]
and I were the two subject matter experts in the room other than
a couple of parents who were in the business. And I think both
[other male teacher] and I at different times during the past cou-
ple years have, you know, threw our arms up." This teacher has
strong views on what constitutes computer science and on how
it should be taught, and frequently saw himself in the minority
on the committee. These interactions portray computer science
knowledge as situated in particular identities, contexts of use, and
power relationships. This is a not a dominant perspective in com-
puter science. Abstraction, one of the field’s core ideas, relies on
the objective representations of concepts2. As the computer science
education community tackles the challenge of making computer
science broadly accessible, we may also come to value a plurality of
different manifestations of what it means to do computer science,
each rooted in its own particular context of use.

In considering the question of process, the committee considered
it a foregone conclusion that this needed to be inclusive, building
a broadly-shared understanding of what computer science is, a
consensus that it should be a core part of the curriculum, and agree-
ment on how it should be implemented. The Board of Education
charged the committee with including stakeholders including teach-
ers, parents, students, and community members. At the two Board
of Education presentations there was robust participation from
members of all these constituencies, including committee members
and those who did not participate. When, at the latest Board meet-
ing, the committee encountered political opposition which stalled
its progress, several committee members reflected on whether a
different process might have been more effective. Some committee
members felt that inclusion had come at the cost of efficiency (9),
and felt that it would be better to move forward with a smaller,
more united committee which could push for a single vision. Oth-
ers argued for the opposite, that the committee should focus on
community education (18) so that more teachers, parents, and stu-
dents could come to an understanding of what computer science is
and why it ought to be a district priority. One participant empha-
sized the political importance of community support: "In order to
2That said, some subfields, such as human-computer interaction and natural language
processing, are fundamentally concerned with representing a plurality of interpretive
processes.

Paper Session: Curriculum Issues 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

318

sell this, we’re going to need to have a district-wide community
committee so that the community knows more about it and we
get them on board." Several committee members pointed out the
recursive challenge of sufficiently educating the school community
about computer science so that the community would be able to
meaningfully participate in designing a computer science education
program.

5 DISCUSSION
Shortly before this study’s publication, the district’s Board of Edu-
cation decided to delay enacting the committee’s recommendations
for a comprehensive K12 CS program with a one-semester gradua-
tion requirement. Instead, the board will convene a smaller, more
focused task force for another year of study. While this commit-
tee’s years of committed work undoubtedly advanced the cause of
comprehensive K12 CS for every student in the district, their goal
has not yet been met.

How might this experience contribute to the larger discourse
of K12 CS education? The financial, cultural, and social capital
which enabled this district to contemplate adopting K12 CS also
set it apart from the vast majority of other districts in the United
States and may limit the applicability of lessons learned here to
other contexts. Would the process be less contentious in school
districts which have less existing computer science expertise and
fewer established programs? Would the debate be obviated in a
large school district or statewide initiative, where policy can be
unified and implementation guidance can be provided to individual
schools? Is this a case of a district that went out too far ahead,
before supporting research and policy infrastructure was in place?

We believe not. Interventions at scale, particularly those which
are distributed online, may succeed in introducing students to com-
puter science without requiring school communities to engage in
the hard work of defining and designing local instantiations of com-
puter science education. But lasting teaching and learning, which
builds identities and expertise, takes place within communities
of practice, populated by people acting from their own situated
understandings and identities. In such an environment the issues
identified in this study are likely to emerge. Participants are likely
to act from their own definitions of computer science, which may be
differently grounded in concepts, practices, or competencies. They
are likely to be divided by competition for the scarce resources of
curricular requirements, and by different opinions on whether com-
puter science should be a standalone course or be integrated across
disciplines. And all of these are likely to be shaped by participants’
life histories with computer science, and the identities they have
developed.

For stakeholders of schools designing comprehensive computer
science programs, this study offers several lessons. It is impor-
tant to realize that there are substantial, unresolved disagreements
about what constitutes computer science, and that any implemen-
tation will need to take a stance on what matters most. Peoples’
understanding of computer science will be situated in their own ex-
perience, and the process of developing a broadly-shared operative
definition of computer science should include time to discuss these
different backgrounds. In order to include participants without ex-
isting computer science experience, it may be necessary to invest

in community education efforts. Despite these efforts, some people
will be skeptical that computer science ought to be a priority; if
they are not also included in the process they may solidify into an
oppositional faction. The question of whether to require a separate
computer science course may be a crux point, essential for equitable
participation but also in competition with other priorities for the
limited number of courses that can be required. The same factors
which have historically excluded students from participating in
computer science are likely to affect potential participants in the
process of designing a computer science program.

For computer science education researchers, this study offers an
example of how ideas from research were understood and used by
one set of practitioners, and also surfaces some ways in which K12
CS education research will differ from research in the university
setting. First, the divisions within academic computer science are
not just an internal family affair. There may be value in further
exploring the tension between different epistemological stances
(concepts, practices, competencies), and in characterizing these ten-
sions rather than trying to resolve them. It would be valuable to
develop constructs which view computer science knowledge and
expertise as situated in particular identities and cultures, and as
part of broader educational goals. Pedagogical content knowledge
[26], knowing not just the content, but also the many ways in which
it can be effectively learned, is particularly important in K12 edu-
cation, a setting in which success is demanded for every student
and learning is more deeply intertwined with developmental pro-
cesses. Such research will likely require participatory relationships
between teachers and researchers. Ubiquitous issues of power and
positionality between K12 teachers and academic researchers are
likely to be particularly exacerbated in computer science, a field
where experts (or even novices) have economic opportunities which
substantially outstrip a teacher’s salary.

6 CONCLUSION
Making computer science a core part of K12 education presents
fundamental challenges to both fields, but we see them as produc-
tive tensions that may push each to grow and improve. Computer
science developed as an unconventional, idiosyncratic field distin-
guished by a characteristic way of thinking, and by identities (geek,
nerd, hacker) which have historically nurtured some marginalized
people while excluding many others. However K-12 education is
charged with designing learning experiences which work for all
students, working within a system shaped by ongoing power strug-
gles including race, gender, and social class. To meet the demands of
K12 education, computer science must adapt to pluralistic ways of
thinking and meet the needs of a more diverse set of practitioners.
On the other hand, many have observed that our K12 public schools
still fundamentally operate according to a model developed in the
nineteenth century. Computer science may bring new technolo-
gies, pedagogies, ways of working, and levers for change such as
transparency and analysis. This study offers an early sketch of how
these tensions and possibilities may unfold.

REFERENCES
[1] 2016. K-12 Comptuer Science Framework.
[2] A. V. Aho. 2012. Computation and Computational Thinking. 55, 7 (2012), 832–835.

https://doi.org/10.1093/comjnl/bxs074

Paper Session: Curriculum Issues 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

319

https://doi.org/10.1093/comjnl/bxs074

[3] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to
K-12: what is Involved and what is the role of the computer science education
community? 2, 1 (2011), 48–54.

[4] Brigid Barron. 2004. Learning ecologies for technological fluency: Gender and
experience differences. 31, 1 (2004), 1–36.

[5] T Bell, I Witten, and M Felllows. [n. d.]. Computer Science Unplugged. www.
csunplugged.org

[6] Paulo Blikstein. 2018. Pre-College Computer Science Education: A Survey of the
Field.

[7] John Seely Brown, Allan Collins, and Paul Duguid. 1989. Situated Cognition and
the Culture of Learning. 18, 1 (1989), 32. https://doi.org/10.2307/1176008

[8] Jerome S Bruner. 1960. The process of education. Harvard University Press.
[9] Raymond E Callahan. 1964. Education and the cult of efficiency. University of

Chicago Press.
[10] Kathy Charmaz. 1996. Grounded Theory. In Rethinking methods in psychology,

Jonathan A. Smith, Rom HarrÃľ, and Luk Van Langenhove (Eds.). Sage.
[11] code.org. 2018. How to teach one Hour of Code with your class. https://

hourofcode.com/ac/how-to
[12] Peter J. Denning. 2017. Remaining trouble spots with computational thinking.

60, 6 (2017), 33–39. https://doi.org/10.1145/2998438
[13] CSTA Standards Task Force. 2017. Computer science standards.
[14] Joanna Goode. 2008. Increasing Diversity in K-12 computer science: Strategies

from the field. In ACM SIGCSE Bulletin, Vol. 40. ACM, 362–366.
[15] Joanna Goode, Gail Chapman, and Jane Margolis. 2012. Beyond curriculum: the

exploring computer science program. ACM Inroads 3, 2 (2012), 47–53.
[16] Joanna Goode and Jane Margolis. 2011. Exploring Computer Science: A Case

Study of School Reform. 11, 2 (2011), 1–16. https://doi.org/10.1145/1993069.
1993076

[17] Egon G Guba. 1981. Criteria for assessing the trustworthiness of naturalistic
inquiries. Ectj 29, 2 (1981), 75.

[18] ISTE. [n. d.]. ISTE Standards for Computer Science Educators. http://www.iste.
org/docs/pdfs/20-14_ISTE_Standards-CSE_PDF.pdf

[19] LAUSD. 2014. L.A. Unified Announces Larger Focus on Computer Science for
K-12. (2014).

[20] Jane Margolis. 2010. Stuck in the shallow end: Education, race, and computing.
MIT Press.

[21] Jane Margolis and Allan Fisher. 2003. Unlocking the clubhouse: Women in comput-
ing. MIT press.

[22] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

[23] Chris Proctor and Paulo Blikstein. 2018. How Broad is Computational Thinking?
A Longitudinal Study of Practices Shaping Learning in Computer Science. (2018),
8.

[24] Mitchel Resnick, John Maloney, AndrÃľs Monroy-HernÃąndez, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, and others. 2009. Scratch: programming for all. 52, 11 (2009),
60–67.

[25] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[26] Lee S Shulman. 1986. Those Who Understand: Knowledge Growth in Teaching.

(1986), 11.
[27] Allen Tucker, Fadi Deek, Jill Jones, Dennis McCowan, Chris Stephenson, and

Anita Verno. 2003. A Model Curriculum for K-12 Computer Science. (2003), 60.
[28] Bryan Twarek and Jim Ryan. 2015. The Need for Computer Science Education

for All Students from PreâĂŘKindergarten to 12th Grade. https://drive.google.
com/file/d/0B0TlX1G3mywqRGJKNkN2RXlZTWs/view?usp=embed_facebook

[29] Adriana Villavicencio, Cheri Fancsali, Wendy Martin, June Mark, and Rachel
Cole. 2018. An Early Look at Teacher Training Opportunities and the Landscape
of CS Implementation in Schools. (2018).

[30] Grant Wiggins and Jay McTighe. 2005. Understanding by design. Ascd.
[31] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),

33–35.

Paper Session: Curriculum Issues 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

320

www.csunplugged.org
www.csunplugged.org
https://doi.org/10.2307/1176008
https://hourofcode.com/ac/how-to
https://hourofcode.com/ac/how-to
https://doi.org/10.1145/2998438
https://doi.org/10.1145/1993069.1993076
https://doi.org/10.1145/1993069.1993076
http://www.iste.org/docs/pdfs/20-14_ISTE_Standards-CSE_PDF.pdf
http://www.iste.org/docs/pdfs/20-14_ISTE_Standards-CSE_PDF.pdf
https://drive.google.com/file/d/0B0TlX1G3mywqRGJKNkN2RXlZTWs/view?usp=embed_facebook
https://drive.google.com/file/d/0B0TlX1G3mywqRGJKNkN2RXlZTWs/view?usp=embed_facebook

	Abstract
	1 Introduction
	2 Background
	3 Methods
	4 Results
	4.1 What is computer science?
	4.2 How should computer science be taught?
	4.3 What process should be used to answer these questions?

	5 Discussion
	6 Conclusion
	References

