
44  acm Inroads  2020 March • Vol. 11 • No. 1

REPRINT

Yasmin Kafai, University of Pennsylvania, Chris Proctor, Stanford University,
and Debora Lui, University of Pennsylvania

From Theory Bias to
Theory Dialogue:
Embracing Cognitive,
Situated, and
Critical Framings
of Computational
Thinking in K-12
CS Education

acm Inroads • inroads.acm.org  45

The increased interest in promoting CS education for all
has been coalescing around the idea of “computational

thinking.” Several framings for promoting computational
thinking in K-12 education have been proposed by
practitioners and researchers that each place different
emphases on either (1) skill and competence building, (2)
creative expression and participation, or (3) social justice
and ethics. We review each framing and how the framings
structure the theory space of computational thinking. We
then discuss how CS education can leverage the explanatory
potential that each framing offers to the implementation
and evaluation of learning, teaching, and tools in computing
education. Our goal is to help CS education researchers,
teachers, and designers unpack and leverage the complexities
of this theory space (rather than ignoring it) while also
addressing broader educational concerns regarding
diversity, providing new directions for how students and
teachers can actively participate in designing their digital
futures, and directing current computing education efforts
towards a more humanistic orientation.

INTRODUCTION
Promoting computer science education has become a global ini-
tiative with the goal to make it a 21st century literacy. Under the
umbrella of “computational thinking” [75], initiatives around the
world propose that every child should learn a core set of compu-
tational skills and use them across the curriculum as well as in
everyday life. Alongside the active debate over how (or whether)
to define computational thinking, hundreds of studies (e.g. [32,
59]) have investigated applications of computational thinking
for K-12 CS education. Within these efforts, different theoretical
perspectives have become more visible, so much that Nelson and
Ko [45:31] have argued: “while theory can accelerate our fields’s
progress and increase its rigor, if not used carefully, it can also
inhibit progress in subtle but important ways.” More specifical-
ly, Nelson and Ko [45] argue that over-reliance on educational
theory within computer science education research can inhibit
the progress within the field by dividing researchers’ attention
between contributing to general learning theory versus devel-
oping new designs, overshadowing domain-specific educational
knowledge, and introducing “theory bias” in peer review.

While Nelson and Ko [45] highlight important concerns,
we take issue with the notion that any interpretation of learn-
ing and thinking can be meaningful without considering its
theoretical underpinnings. Learning of any subject matter is
framed through various theoretical lenses—or metaphors as
Sfard [61] argued—each of which carry tacit assumptions and
beliefs not only regarding how people learn best, but also for
why and for what purposes. In turn, these theoretical perspec-
tives consequently guide any interpretation or understanding
of instructional activities, actions and tool designs. Rather than
ignoring this intricate connection between theory and design,
we therefore advocate foregrounding the diversity of theoreti-
cal perspectives in learning and teaching that exist within K-12

CS education and research. Following Haraway [26], our goal
here is not to push any kind of ‘objective’ truth about the best
practices in CS Education, but rather to acknowledge that all
perspectives and approaches within the field are partial and
contingent. An intervention whose results appear lackluster
from one theoretical perspective might be profoundly impact-
ful from another. Only by recognizing these partial perspectives
can we truly reach critical transformational opportunities for
K-12 CS education and research.

Attention to educational theory is particularly important
as momentum is growing behind Wing’s [75:33] argument: “to
reading, writing, and arithmetic, we should add computation-
al thinking to every child’s analytical ability.” If computational
thinking is to become a new literacy [31, 36] added to the canon
of textual, mathematics and science literacies, we need to frame
computational thinking beyond an understanding of computa-
tional concepts and practices needed for digital content pro-
duction, to include an understanding of the values, biases, and
histories embedded in the digital technologies. Becoming liter-
ate is not just about the pragmatics of reading and writing text
(or code) but also about how these skills are inherently con-
textualized within particular personal and political dimensions
[58]. From this vantage point, if computational literacy is only
configured as instrumental [69], it will miss critical aspects that
have emerged including inequities caused or exacerbated by the
societal impact of computing (e.g.,[41]). While much attention
has been paid to the lack of diversity in practice and participa-
tion in K-12 CS education, the diversity of theoretical framings
or lenses through which we design, examine, and evaluate com-
puting education has received far less scrutiny.

In this paper, we use the concept of computational thinking to
illustrate how theoretical framings direct our attention to differ-
ent, but equally important aspects in learning and teaching with-
in K-12 CS education. Theoretical framing is needed to articulate
educational goals, and therefore to evaluate the quality of peda-
gogical designs. We disagree with Nelson and Ko [45] that there
can be a theory-free evaluation of learning, or that some designs
can be objectively better than others, outside of any theoretical
framing. As a first step, we identify and describe three prevalent
framings of computational thinking that we have found within
the larger landscape of CS education: (1) Cognitive computation-
al thinking seeks to provide students with an understanding of
key computational concepts, practices, and perspectives thereby
emphasizing skill building and competencies which will be useful
in college and future careers; (2) Situated computational thinking
stresses personal creative expression and social engagement as a
pathway in becoming computationally fluent building on youth
interest in digital media and production; and (3) Critical compu-
tational thinking recognizes that computing is not an unequivo-
cal social good, and proposes an analytical approach to the val-
ues, practices, and infrastructure underlying computation as part
of a broader goal of education for justice.

We illustrate each framing with examples from various studies
and discuss how these framings of computational thinking have
functioned as design heuristics that provide specific directives

46  acm Inroads  2020 March • Vol. 11 • No. 1

From Theory Bias to Theory Dialogue: Embracing Cognitive, Situated, and Critical Framings of
Computational Thinking in K-12 CS Education

of kids in the creation of personalized projects, including ani-
mations and video games, that are shared online. These distinct
framings of CT shape not only how activities using Scratch are
designed, but also what roles learners play, and what is valued
in terms of learning outcomes.

COGNITIVE COMPUTATIONAL THINKING
The dominant framing of computational thinking, reflecting the
majority of research in CS education [65], is cognitive. The cogni-
tive framing of computational thinking seeks to provide students
with an understanding of key computational concepts, practices,
and perspectives [5] thereby emphasizing skill building and com-
petencies which will be useful in college and future careers. This
direction draws from cognitive research traditions that already
dominated efforts to introduce programming in the 1980’s (e.g.
[63]). Here computational thinking is seen as a form of problem
solving performed by individual students [25]. Instructional activ-
ities are developed to introduce students to computational con-
cepts like loops, recursion, conditionals, and data structures, and
practices such as iteration, abstraction and automation, and re-
sponsible interactions. A large number of related efforts also pro-
mote the integration of computational thinking into STEM disci-
plines [71]. Many national standards and curricula such as Code.
org’s CS Discoveries [9] have adopted this direction and mapped
out learning progressions and pathways for how students should
develop computational thinking, starting as early as kindergarten.

Most studies focused on student learning within Scratch
have highlighted this cognitive emphasis, looking at students’
understanding of foundational CS concepts. A large part of this
research has focused on assessment and evaluation of students’
programming ability and comprehension of basic and advanced
coding constructs (e.g., variables, conditional logic), through
activities such as think-aloud interviews, creating functional
open-ended projects, and engaging with design scenarios [5,
24]. Others have stressed how the particular contexts of Scratch
learning could promote cognitive gains, for instance, looking
at how block or text-based programming languages can sup-
port learning of CS concepts in different ways [72, 73], or how
the specifics of interface and game design on Scratch can be
used to motivate and assess learning of computational thinking
concepts [74]. Although the cognitive framing of computation-
al thinking typically assesses learning on an individual basis, it
would be unfair to suggest that cognitive approaches necessar-
ily imply that instruction is isolated and decontextualized. On
the contrary, most of these studies involve students creating in-
dividual projects and artifacts rather than learning these skills
within artificially isolated contexts. However, the goal of all of
this activity is to increase individual comprehension of CS con-
cepts and competent programming performance, something
that distinguishes it from the next framing described below.

SITUATED COMPUTATIONAL THINKING
An alternative proposition to the cognitive emphasis has been
a situated framing of computational thinking, which sees value
in students developing computational fluency through design-

for curricular initiatives that inform the design of learning and
teaching tools, materials and activities. We then consider how
these framings are an integral part of the larger theory space of
efforts promoting K-12 computational thinking and how they
should be considered in dialogue with one another rather than
in opposition. Based on this understanding, we offer suggestions
for how to proceed forward with a more holistic view of not only
what computational thinking should be, but also directions for it
might be studied or taught moving into the future.

THREE FRAMINGS OF COMPUTATIONAL
THINKING
Over a decade ago, Wing [75:33] proposed the term computation-
al thinking as “involving solving problems, designing systems and
understanding human behavior that draws on concepts funda-
mental to computing” (p. 33) to the CS community. Wing is cer-
tainly not the first person to describe a skill set needed to design
and implement computations—which has also been referred to as
procedural or algorithmic thinking [2]. Efforts to define computer
science’s unique ways of thinking and practicing are part of a “long
quest” within the discipline, aiming to distinguish itself from engi-
neering and mathematics and developing its independent identity
[64]. While some see computational thinking as specific to the
discipline [13], others such as Wing assign it more general pur-
pose status that is not necessarily tied to machines [11].

Settling these differences is beyond the scope of this paper,
but what is relevant to our work is how computational think-
ing has been taken up within K-12 education. Papert [47:182] is
credited with introducing the term wanting “to integrate com-
putational thinking into everyday life.” Papert [47] and others
envisioned early on that computational ideas could serve as
a tool for not only learning mathematics [16] but also a wide
range of other subjects in new ways [1, 14, 62]. This general
purpose application of computational thinking garnered much
traction in bringing the first wave of computers into schools in
the 1980’s but also generated considerable critique because of
its lack of empirical evidence for transfer [49].

In many of today’s national initiatives, standards, curricula,
and courses, computational thinking has again been adopted as
a general purpose skill which forms the basis for competence
building that all students need to learn [70]. This approach
often ignores other framings which provide different direc-
tions for designing and understanding learning and teaching.
Drawing on prominent educational learning theories, we have
broadly categorized these other framings as situated and criti-
cal computational thinking. In the following sections, our goal
is to outline each framing of computational thinking and then
to provide examples of how each framing has been employed in
current research studies. We describe how research involving
the same programming tool and context, Scratch [53], asks dif-
ferent questions, seeks different learning outcomes, and results
in different curricular activities when computational thinking is
framed in different ways. Scratch is a block-based programming
language and community, which has attracted over ten millions

acm Inroads • inroads.acm.org  47

CRITICAL COMPUTATIONAL THINKING
Finally, critical computational thinking has emerged more re-
cently as another framing which places students’ computational
thinking in the traditions of critical pedagogy, which empha-
size both an examination of and resistance to oppressive power
structures [20] and production-oriented media literacy, which
highlights how youth agency can be acquired through the pro-
cess of creating and disseminating media content [6, 44]. Here,
computational thinking is seen as a potential channel for en-
gaging with the political, moral and ethical challenges of the
world whether food insecurity or gentrification through the
production of digital, multimedia products. In line with Paris’s
[48] argument that truly supporting marginalized students re-
quires helping them to understand and contest the forces which
marginalize them, some researchers have argued that situated
computational thinking does not go far enough in confronting
forces such as racism and sexism [68]. Activities that have ad-
opted this approach include an after-school project in which
youth interviewed residents and worked together with design-
ers and programmers to visualize gentrification in their neigh-
borhood [39], and a mobile app that would collate available
out-of-school programs and opportunities for youth living in
under-resourced communities [67]. Curricula such as Explor-
ing Computer Science [46] have additionally addressed some
of these issues by designing socially relevant and meaningful
computation activities for marginalized students.

In terms of Scratch, there have been far fewer efforts to pro-
mote critical approaches to computational thinking, something
which is also true within the wider field of CT research. One
notable effort in this direction are the aforementioned work
of Lee and Soep [39:480], which used Scratch in their efforts
to push youth to “conceptualize, create, and disseminate dig-
ital projects that break silences, expose important truths, and
challenge unjust systems.” The goals here were to design activ-
ities that supported students’ agency in developing their own
computational artifacts in order to address personally relevant
social justice issues, for instance, games that highlight issues
such as racial profiling and undocumented laborers [43]. Im-
portantly, the primary emphasis here was developing critical
content using computation that responds to structural issues in
the world (the ‘what’), rather pushing students to analyze and
understand the actual underlying infrastructure that supports
everyday computation (the ‘how’).

More recently however, there have been calls to expand
critical computational thinking such that it does focus on this
second goal, namely, ‘pulling back the curtain’ of the techno-
logical mechanisms underlies our existing computational sys-
tems in order to understand how these may cause inequities
in and of itself [68]. This includes, for instance, considering
current event issues like how implicit bias might be embed-
ded in crime-prediction software that police use, or how mass
surveillance by social media can create openings for election
hacking [68]. We can see, therefore, how earlier work in crit-
ical CT considered critical content creation as the primary
goal, with the “skill building in coding and design” [39:480] as

ing and programming shareable digital artifacts. This framing
draws from constructionist [47] and connected learning theo-
ries [29], which emphasize interest-driven and peer-supported
activities. Here computational thinking is seen as a vehicle for
personal expression and connecting with others alongside and
intersecting a plurality of other literacy practices [22]. Learn-
ing key computational concepts and practices are often situated
within the design of digital applications shared with authentic
audiences in person or over social networks. For these reasons,
this approach has also been called ‘computational participation’
[8] in order to emphasize the social purpose of computation-
al designs and interactions in which learners engage. Efforts in
this direction emerged largely from promoting CS education
outside of school in community technology centers and online
communities, and from a recognition that inequitable access
to opportunities to participate, develop interest, and have one’s
identities supported are a root cause of the lack of diversity
in computer science [41, 42]. Example curricula include the
Creative Computing Guide [4] which situates students’ intro-
duction to computational thinking through a variety of game
design and storytelling activities or Stitching the Loop [35] ac-
tivities that engage students in crafting and coding personalized
electronic textiles.

This situated approach has become yet another popular
area of research within Scratch, which has emphasized the
particular socio-cultural contexts in which this activity oc-
curs, thereby emphasizing personal meaning and creative ex-
pression. Within some studies, this focus is accomplished by
explicitly pushing the link between creativity and computing
and working to broaden perspectives on the field of Computer
Science at-large. For instance, Giannakos, Jaccheri, and Pro-
to [21] developed a Scratch activity where children worked
alongside adults to create interactive artworks for the pur-
poseful goal of encouraging youth to become digital creators
through programming. Related efforts have included situating
Scratch within the context of students’ other interests, includ-
ing music [17, 31], storytelling [4, 76], or, most often, video
games. These approaches have resulted in tens of thousands
of digital artifacts created by children in the Scratch online
community, referencing popular commercial game franchises
and narratives [36].

Emphasis on situated computational thinking in Scratch is
additionally accomplished through highlighting the social in-
teractions therein, whether structuring forms of online collabo-
ration and feedback through the site itself [21], sharing and cre-
ative remixing of other people’s projects [8], or creating games
and tangible controllers that are explicitly meant to engage an
in-person audience [17]. While students’ comprehension of CS
concepts and abilities to program are important here, the main
goal of these efforts is to emphasize how computing is a tool
that can be used to express students’ interests and identities to
others within their communities. Notably, allowing personal-
ized pathways into computing is meant to engage individuals
who might otherwise be excluded from the field and explicitly
done in an attempt to promote equity within the field [60].

48  acm Inroads  2020 March • Vol. 11 • No. 1

From Theory Bias to Theory Dialogue: Embracing Cognitive, Situated, and Critical Framings of
Computational Thinking in K-12 CS Education

participation [18]. Likewise, designing social justice-focused
applications [43] takes advantage of the benefits of critical me-
dia production but does not always guarantee more in-depth
computational understanding (one exception is [12]).

While our discussion of different framings suggests equal
relevance, within CS education the framings have not received
equal attention: the cognitive framing by far outpaces other
theoretical approaches in published CS education research
[65, 68]. One possible reason for this dominance of cognitive
framings in CS education is that when the first wave of research
started in the 1980s, cognitive theory had just gained traction
for gaining better insights into students’ thinking and problem
solving across different academic disciplines [27]. CS educa-
tion researchers followed suit, most likely finding resonance
with the cognitive perspectives featuring the individual mind
as an information processing unit, not unlike a computer itself.
However, critics of cognitive educational research have high-
lighted some of its weaknesses, namely that learning is not just
an individual enterprise but situated in social interactions and
contexts [41, 42]. This critique gave rise to new emphases with-
in educational research, namely a socio-cultural perspective
which recognizes the need for authentic learning practices—an
aspect also highly valued by all—and the realization that learn-
ing is about becoming a member of a community of practice
with shared goals and values.

Sfard [61] most clearly articulated these distinctions between
cognitive and situated framings of learning as two metaphors
of “acquisition” and “participation”, respectively, in educational
learning research. She pointed out how cognitive approaches
treat knowledge as a property that learners acquire since it fo-
cuses on individuals, while situated approaches to learning see
participation as a key process in which knowledge is negotiated
between members of a community since it focuses on social
interactions. While not originally included in Sfard’s [61] anal-
ysis, critical approaches to learning might add “action” to “ac-
quisition” and “participation,” emphasizing that what is learned
and how it is learned and valued reflects the particular norms,
values, and power structures of a society. When a society is un-
just, education ought to be oriented toward understanding and
challenging injustice. We sought to make visible the different
epistemological commitments of each learning perspective and
how it related to the framings of computational thinking, an
overview of which is provided in Table 1.

a desirable but secondary outcome, while the latter emphasis
highlights a cognitive understanding of underlying concepts
of CT and its uses in the world as key to becoming a more
critical practitioner of computation.

UNDERSTANDING THE THEORY SPACE OF
COMPUTATIONAL THINKING
Each framing offers valuable, but different insights into what
learning and teaching computational thinking can and should
be about. One striking commonality is that the learning of
computational thinking within each of these three framings is
often situated in the context of designing applications such as
instructional software or games [33, 37] rather than learning
code for its own sake. This contextualization is a stark depar-
ture from how computational thinking was taught during the
first wave of computer science in schools in the 1980s. At that
time, if students engaged with computing at all, it was in the
context of writing short programs in which they learned com-
putational concepts and practices, disconnected from the rest
of the curriculum, their personal media interests, or any social
relevance [55].

Where differences emerge between these three framings is
how they balance their goal of promoting basic programming
competence and understanding (something that is necessary
for all three frameworks), with understanding how these skills
can be used both for personal/social enrichment and to address
issues within the world at-large. For instance, the emphasis in
cognitive framings is on individual competency with compu-
tational skills and knowledge; building personal relationships
with ideas is framed as part of the design leading to learning,
rather than the learning itself. Situated framings center the
construction of long-lasting and meaningful relationships with
CS—a critical feature for a STEM field that historically has
been an exclusive clubhouse [10]. But fostering personal con-
nections alone is no guarantee for inclusion as we know from
studies of online creative learning communities such as Scratch
where content is often lacking cultural relevance [40]. Howev-
er, we do not argue that the expanding focus from cognitive to
situated to critical is simply progress toward better framings.
We know that participation alone will not guarantee that nov-
ice programmers have access to key computational concepts
[19] or pathways into more advanced forms of computational

Table 1: Overview of Learning Perspectives in Framing Computational Thinking

Frame Unit of Analysis Epistemology Priorities Computational Thinking
Cognitive Individual learners Skills, competencies,

knowledge of a
particular discipline

Measurable,
transferrable skills,
economic opportunity

Computational concepts (algorithms, abstraction)
and practices (remixing, iteration)

Situated Communities of practice,
activity systems, learning
ecologies

Practices, participation,
preparation for future
learning

Equity, interest,
identity development,
creativity

Creating personally-meaningful applications,
building communities, supporting social
interactions, play

Critical Society at-large: existing
structures of power, privilege,
and opportunity (race,
gender, social class, ability)

Awareness of
ideologies, strategies
for social action

Justice, critical
understanding,
enacting social change

Understanding and critique of existing
computational infrastructures, creating applications
to promote thriving, awareness, and activism

acm Inroads • inroads.acm.org  49

In this scenario, the use of the blocks supported students’
cognitive understanding since integration of the communi-
ty blocks with regular programming blocks to require a solid
understanding of computational concepts and programming
practices. Even when the pedagogical goals are cognitive, sit-
uated approaches may be more effective [51]. The community
blocks also supported situated use of Scratch, since users creat-
ed customized projects with the blocks, whether an ice cream
visualization or dress-up game project that used social met-
rics to determine the number of scoops or the project viewer’s
purchasing power [12]. Finally, these blocks were essential in
promoting critical engagement with CT, since they got users to
further consider the larger computing infrastructures in which
they engage every day, for instance, questioning the intentions
of Scratch designers and other users in designing some commu-
nity features (e.g., friends, favorites), as well as the affordances
and constraints of different types of technology in controlling
social interactions online [28]. The design of community blocks
in Scratch therefore served as a tool that could promote goals
within all three framings, something which might serve a mod-
el for future design and analysis work.

Our second example leverages the different scales of analysis
promoted within each learning perspective and framing. Cogni-
tive framings of computational thinking can create opportuni-
ties for us to think about what is happening at the level of an in-
dividual learner, focusing specifically on their mental constructs
and understandings. In contrast, situated computational think-
ing can allow us to step back and consider what is occurring
amongst multiple people, whether within physical spaces like
students in a classroom making games for one another, or within
digital space. Finally, critical computational thinking with its fo-
cus on societal structures can allow us to zoom further out, con-
sidering how these individuals and groups are situated within
larger structures of capital, resources, and ideologies spanning
neighborhoods, nations, and globalized networks. While one
can apply these different framings with other kind of scales—for
example, considering the cognition of all elementary school stu-
dents in the United States, or how an individual becomes mar-
ginalized by her online social networks on the basis of her race
or ethnicity—access to these multiple framings of CT can give
us new tools to not only ask but also answer these questions.

Consider an imaginary teen who is a regular participant
in library-based technology-focused afterschool program.
A cognitive framing would allow us to zero in on the mental
processes of this teen, looking to see how her actual activities
(e.g., remixing existing racing games) can support learning
particular CS concepts. A situated framing would allow us to step
back to consider how this teen’s work on Scratch can help her
create connections online (e.g., the siblings from Thailand whose
games she’s remixed) and in-person (e.g., showing off her game
to her younger brother and his friends). Finally, a critical framing
would allow us to ask how this particular afterschool program is
situated within the larger network of CS opportunities for this
teen (e.g., if this is the first time she has ever been given the
opportunity to code, and if this motivates her to recruit other

Furthermore, rather than pitting the different metaphors
and framings against each other, we follow Sfard’s [61:12] con-
clusion that we should embrace, and not ignore, other theoret-
ical perspectives in education research:

As researchers we seemed to be doomed to living in a
reality of variety of metaphors. We have to accept the
fact that the metaphors we use while theorizing may be
good enough to fit small areas, but none of them suffice
to cover the entire field. In other words, we must satisfy
ourselves with only local sensemaking. A realistic thinker
knows he or she has to give up the hope that the little
patches of coherence will eventually combine into a con-
sistent global theory. It seems the sooner we accept the
thought that our work is bound to produce a patchwork
of metaphors rather than a unified, homogenous theory
of learning, the better for us and for those whose lives are
likely to be affected by our work.

By putting these views into dialogue with one another, we
can acknowledge that each offers a partial perspective that can
answer different questions about learning and teaching that
can lead us to a more full and complete picture of how we can
succeed together in this space. Our proposal in moving forward
is to engage in the building of a “patchwork of metaphors” as
Sfard [61] suggested by putting the various framings into a more
inclusive dialogue rather than in exclusive opposition to each
other. In the following section, we discuss three examples—
designing tools, learning at scale, and teaching computing—to
illustrate what such a dialogue could concretely look like.

PUTTING THE FRAMINGS IN DIALOGUE
We focus on how framings in conversation with one anoth-
er can create opportunities for us to examine computational
thinking from more than one perspective, ultimately building
a more sophisticated foundation for CS education research
and practice. Our first example illustrates different inter-
pretations in understanding the same programming tool for
promoting critical data literacy, or analytical approaches to
understanding how digital data is leveraged and used online.
In this study, researchers developed a new set of “communi-
ty blocks” in Scratch which explicitly makes transparent the
collection, calculation, and dissemination of participation
data common in many massive online communities that us-
ers could use while programming their personal projects [12].
As the researchers discovered, users of these blocks became
more aware of numerous issues surrounding how digital data
is both gathered and used by systems such as Scratch, includ-
ing issues surrounding privacy and data sharing and possible
avenues for exclusion generated through certain data-driven
algorithms [28]. Within this study, we can see how the dif-
ferent framings can contribute not only individually but also
collectively to a more sophisticated understanding of how
computational tools can assist in promoting computational
thinking on multiple levels.

50  acm Inroads  2020 March • Vol. 11 • No. 1

From Theory Bias to Theory Dialogue: Embracing Cognitive, Situated, and Critical Framings of
Computational Thinking in K-12 CS Education

tion to traditional crafting practices [23]. Moving into the more
formal environment of computer science classrooms required
a cognitive lens, looking at students’ understanding of founda-
tional computing concepts and practices [7, 14] and developing
a series of increasingly complex projects [5, 11]. The examina-
tion of teaching practices adopted a more situated framing of
how teachers supported peer learning and promoted personal
expression when teaching CS concepts in instructor consulta-
tions and prescribed milestones [5].

These examples illustrate how adopting a ‘patchwork of met-
aphors’ [61] could be useful for CS researchers, designers, and
educators. This is particularly important as CS moves into the
K-12 space, which is populated a diverse patchwork of priorities
and stakeholders. K-12 CS education advocates invoke a variety
of rationales for its importance [3], and recent efforts to design
and implement K-12 CS suggest that implementations which
fail to deeply engage with this plurality of perspectives may en-
counter indifference or opposition [50]. We do not advocate
that researchers abandon their epistemological commitments
but rather suggest that they maintain their distinct theoretical
framings while also considering others. Having multiple fram-
ings would allow their work to be understandable by the broad-
er community, making it easier to affirm areas of agreement,
and question assumptions in a mutually-comprehensible way.
This would go a long way in addressing central concerns about
potential theory bias voiced by Nelson and Ko [54]. Instead of
trying to limit ourselves to one-size-fits-all approach that aims

people from her community into the program). By considering
these different framings in dialogue then, we can look at the
computing life of this teen from multiple scales, highlighting
a more holistic perspective on her computational thinking
engagements (see Figure 1).

Finally, considering the three framings in dialogue with one
another allows CS education researchers and practitioners to
take into account multiple ways of teaching computational
thinking. While cognitive research on computational thinking
has often considered a ‘best practices’ approach toward teach-
ing CS concepts and practices, considering all three perspec-
tives can open up pedagogies of computational thinking orient-
ed to different but equally valid epistemologies. For instance,
introducing particular CS concepts such as loops, variables,
and Boolean logic might benefit from highly scaffolded debug-
ging activities, while promoting critical analyses of online sur-
veillance and privacy concerns might require another approach
of asking students to research their own personal engagements
with social media. Additionally, considering these framings in
tandem might also help us all to consider approaches toward
computing that have not yet been explored and developed.

Early work mostly took place within informal learning envi-
ronments and emphasized creative expression with e-textiles,
thereby giving students free rein to explore existing projects
and objects, and incorporate their own interests into designing
a personalized artifact [11]. In critical examinations of e-textiles
learning, we focused on their gendered nature [25] and rela-

Figure 1: Framings of computational thinking represent different scales of analysis

acm Inroads • inroads.acm.org  51

which could accommodate the three framings discussed in this
paper. For example, diSessa’s [14] analysis of literacy focuses on
“material intelligence,” or thinking with a representational me-
dium. His discussion of cognitive and social aspects of material
intelligence could easily be expanded to align with the framings
of computational thinking presented here.

However, if the CS education research community is to
profit from this shift, literacy ought to be used as the basis for
dialogue, not internecine battles. Scribner [58], writing in the
context of the so-called “literacy wars” between advocates of
phonics and contextualized whole-language instruction, chose
to discuss literacy in terms of metaphors instead of definitions.
Like Sfard [61], Scribner argued that “conflicts and contradic-
tions are intrinsic to...an essentialist approach” [58:7]. Ultimate-
ly, the tensions giving rise to these definitional questions in-
dicate the growing societal importance of computing and the
maturation of the field of CS education research. “Points of view
about literacy as a social good, as well as a social fact, form the
ground of the definitional enterprise. We may lack consensus
on how best to define literacy because we have differing views
about literacy’s social purposes and values” [58:8]. Advancing
computational literacy situates the learning and teaching of
computer science in broader, inherently-contested questions
about the role of education in a democratic society.

Acknowledgements
The writing of this paper was supported by grant #1509245 from the National
Science Foundation to Yasmin Kafai. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the National Science Foundation, the University of
Pennsylvania, or Stanford University.

References
 1. Abelson, H. and diSessa, A. Turtle geometry: The computer as a medium for

exploring mathematics. (Cambridge: MIT Press, 1986).
 2. Aho, A. Ubiquity symposium: Computation and computational thinking. in Ubiquity

2011. (2011).
 3. Blikstein, P. Pre-College Computer Science Education: A Survey of the Field. (2018).
 4. Brennan K., C Balch, C., and Chung, M. Creative Computing 3.0. (Cambridge:

Harvard University Press, 2019).
 5. Brennan, K. and Resnick, M. 2012. New frameworks for studying and assessing the

development of computational thinking. in Proceedings of the 2012 annual meeting
of the American Educational Research Association. (Vancouver, 2012), 25.

 6. Buckingham, D. Media education: Literacy, learning and contemporary culture.
(Cambridge: Polity Press, 2003).

 7. Flórez,F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., and Danies, G.
Changing a Generation’s Way of Thinking: Teaching Computational Thinking
Through Programming. Review of Educational Research 87, 4 (2017-08), 834–860.
doi: 10.3102/ 0034654317710096.

 8. Burke, Q. and Kafai, Y. The writers’ workshop for youth programmers: digital
storytelling with scratch in middle school classrooms. In Proceedings of the 43rd
ACM technical symposium on Computer Science Education (SIGCSE ’12). (New York:
ACM Press, 2012), 433–438. doi: 10.1145/2157136.2157264.

 9. Code.org. CS Discoveries. https://code.org/educate/csd. Accessed: 2019 June 1.
 10. National Research Council. Report of a workshop on the scope and nature of

computational thinking. (Washington: National Academies Press, 2010).
 11. Curzon, P., Bell, T., Waite, J., and Dorling, M. Computational Thinking. in Cambridge

Handbook of Computer Science Education Research, edited by S. Fincher and A.
Robbins (Cambridge: Cambridge University Press, 2019).

 12. Dasgupta, S. and Hill, B. Scratch Community Blocks: Supporting Children as
Data Scientists. in Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems - CHI ’17. (New York: ACM Press, 2017), 3620–3631. doi:
10.1145/3025453.3025847.

 13. Denning, P. Remaining trouble spots with computational thinking. Communications
of the ACM 60, 6 (2017), 33–39.

 14. diSessa, A. Changing minds: Computers, learning, and literacy. (Cambridge: Mit
Press, 2001).

to fulfill the computational thinking needs of all students, we
can focus on which questions are important and which theories
and methods are best suited to address them.

CONCLUSIONS
Nelson and Ko’s [54] concerns that overemphasis on theory
building may hinder innovation, understanding, and evaluation
are important and need to be addressed within the CS educa-
tion research community. However, we take issue with the im-
plicit suggestion that design could be pursued separately from
theoretical engagement. Sandoval’s [57] conjecture mapping
distinguishes between design conjectures (hypotheses about
how a design might result in mediating processes) and theo-
retical conjectures (hypotheses about how mediating processes
might result in learning outcomes). In concrete terms, we can
collect analytics about how students use a programming inter-
face to answer a design conjecture, but a theoretical conjec-
ture (supported by further evidence) is required to support the
claim that a particular kind of learning outcome has occurred.
Design-based research, as practiced in the learning sciences,
“often aims to innovate not just processes of instruction but the
kinds of outcomes desired from instruction” [57:24].

Furthermore, we argue that foregrounding theoretical per-
spectives are what make the priorities and perspectives of di-
verse stakeholders visible within the context of research and pol-
icy. The diversity of perspectives on computational thinking is a
resource, and not a stumbling block, for understanding the com-
plex ecologies in which learning and teaching in CS education is
situated. Placing an individual research project’s framing within
a broader theory space, could make it possible to engage with
legitimate and important questions based in other framings.

In this paper, we unpacked different framings of computa-
tional thinking that have been in use in the CS education com-
munity. Rather than seeking conceptual unity in computational
thinking, we highlighted the different ontological commitments
that cognitive, situated and critical framings bring to computa-
tional thinking and illustrated how these contextualize research
with programming tools, design of applications, and classroom
implementations. Our approach to theory dialogue is in line
with recent efforts which have proposed expanded framings
of computational thinking such as computational participa-
tion [34], computational making [56], or computational action
[66] and begin to cross the boundaries established around each
framing. For instance, computational action [66] seeks to con-
nect cognitive and critical aspects while computational partici-
pation [34] connected situated and critical aspects.

We proposed that research on computational thinking
should make room for multiple framings and privilege inter-
disciplinary perspectives. Ultimately, we believe our proposal
of theory dialogue is a matter of getting CS education research-
ers to understand the different scales and perspectives in which
they are working when studying computational thinking. Re-
cent calls for expanding computational thinking into compu-
tational literacy [15, 30, 38, 52, 69] potentially offer a construct

52  acm Inroads  2020 March • Vol. 11 • No. 1

From Theory Bias to Theory Dialogue: Embracing Cognitive, Situated, and Critical Framings of
Computational Thinking in K-12 CS Education

 41. Margolis. J. Stuck in the shallow end: Education, race, and computing. (Cambridge:
MIT Press, 2008).

 42. Margolis, J. and Fisher, A. Unlocking the clubhouse: Women in computing.
(Cambridge: MIT Press, 2003).

 43. Margolis J., Ryoo, J., Moreno Sandoval, C. D., Lee, C., Goode, J., and Chapman,
G.. 2012-12. Beyond Access: Broadening Participation in High School Computer
Science. ACM Inroads. 3, 4 (2012-12), 72–78. doi: 10.1145/2381083.2381102.

 44. Morrell, E. Critical literacy and urban youth: Pedagogies of access, dissent, and
liberation. (Routledge, 2015).

 45. Nelson, G. and Ko, A. On Use of Theory in Computing Education Research.
in Proceedings of the 2018 ACM Conference on International Computing
Education Research (ICER ’18). (New York: ACM Press, 2018), 31–39. doi:
10.1145/3230977.3230992.

 46. Palumbo, D. Programming Language/Problem-Solving Research: A Review of
Relevant Issues. Review of Educational Research. 60, 1 (1990), 65-89.

 47. Papert, S. Mindstorms: Children, computers, and powerful ideas. (Basic Books, 1980).
 48. Paris, D. Culturally sustaining pedagogy: A needed change in stance, terminology,

and practice. Educational Researcher 41, 3 (2012), 93–97.
 49. Pea, R. and Kurland, D. On the cognitive effects of learning computer programming.

New ideas in psychology 2, 2 (1984), 137–168.
 50. Proctor, C., Bigman, M., and Blikstein, P. Defining and designing computer science

education in a K-12 public school district. in SIGCSE ‘19: Proceedings of the 50th
ACM Technical Symposium on Computer Science Education. (New York: ACM Press,
2019). 314-320. doi: 10.1145/3287324.3287440.

 51. Proctor, C. and Blikstein, P. How Broad is Computational Thinking? A Longitudinal
Study of Practices Shaping Learning in Computer Science. in Rethinking learning in
the digital age: Making the Learning Sciences Count. 13th International Conference
of the Learning Sciences. (International Society of the Learning Sciences, 2018),
544–551.

 52. Proctor, C. and Blikstein, P. Unfold Studio: Supporting critical literacies of text &
code. Information and Learning Science 1, 2 (2019).

 53. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., and Silverman, J. Scratch: Programming for all.
Communications of the ACM. 52, 11 (2009), 60–67.

 54. Rich, P. and Hodges, C. Emerging research, practice, and policy on computational
thinking. (Springer, 2017).

 55. Richard, G. and Kafai, Y.Blind Spots in Youth DIY Programming: Examining Diversity
in Creators, Content, and Comments Within the Scratch Online Community. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(CHI ’16). (New York: ACM Press, 2016), 1473–1485. doi: 10.1145/2858036.2858590.

 56. Rode, J., Weibert, A., Marshall, A., Aal, K., von Rekowski, T., El Mimouni, J.,
and Booker, J. From Computational Thinking to Computational Making. In
Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp ’15). (New York: ACM Press, 2015), 239–250. doi:
10.1145/2750858.2804261.

 57. Sandoval, W. Conjecture mapping: An approach to systematic educational design
research. Journal of the learning sciences 23, 1 (2014), 18–36.

 58. Scribner, S. Literacy in Three Metaphors. American Journal of Education 93, 1 (1984),
6–21. doi: 10.1086/443783.

 59. Searle, K., Fields, D., and Kafai, Y. Is sewing a “girl’s sport”? Addressing gender
issues in making with electronic textiles. Makeology: Makers as Learners 2 (2016), 72.

 60. Searle, K. and Kafai, Y. Boys’ Needlework: Understanding Gendered and
Indigenous Perspectives on Computing and Crafting with Electronic Textiles. In
Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (ICER ’15). (New York: ACM Press, 2015), 31–39. doi:
10.1145/2787622.2787724.

 61. Sfard, A. On two metaphors for learning and the dangers of choosing just one.
Educational researcher. 27, 2 (1998), 4–13.

 62. Solomon, C. Computer environments for children: A reflection on theories of
learning and education. (Cambridge: MIT press, 1988).

 63. Soloway, E. and Spohrer, J. Studying the novice programmer. (Psychology Press,
2013).

 64. Tedre, M. and Denning, P. The long quest for computational thinking. in Proceedings
of the 16th International Conference on Computing Education Research. (New York:
ACM Press, 2016), 120–129.

 65. Tenenberg, J. and Knobelsdorf, M. Out of our minds: a review of sociocultural
cognition theory. Computer Science Education. 24, 1 (2014), 1–24.

 66. Tissenbaum, M, Sheldon, J., and Abelson, H. From Computational Thinking to
Computational Action. Communications of the ACM ,62, 3 (2019), 34–36. doi:
10.1145/3265747.

 67. Vakil, S. A Critical Pedagogy Approach for Engaging Urban Youth in Mobile App
Development in an After-School Program. Equity & Excellence in Education. 47, 1
(2014), 31–45. doi: 10.1080/10665684.2014.866869.

 68. Vakil, S. Ethics, Identity, and Political Vision: Toward a Justice- Centered Approach
to Equity in Computer Science Education. Harvard Educational Review 88, 1 (2018-
03), 26–52. doi: 10.17763/1943-5045-88.1.26.

 69. Vee, A. Coding literacy: How computer programming is changing writing.
(Cambridge: Mit Press, 2017).

 70. Vogel, S., Santo, R., and Ching, D. Visions of computer science education:
Unpacking arguments for and projected impacts of CS4All initiatives. in
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. (New York: ACM Press, 2017), 609–614.

 15. diSessa. A. What If Your Project’s Timeline is a 100 Years?: Reflections on
Computational Literacies. in Proceedings of the 2017 Conference on Interaction
Design and Children. (New York: ACM, 2017), 1–2.

 16. Feurzeig, W., Wexelblat, P, and Rosenberg, R. SIMON-A Simple Instructional
Monitor. IEEE Transactions on Man-Machine Systems, 11, 4 (1970), 174–180.

 17. Fields, D., Vasudevan, V., and Kafai, Y. The programmers’ collective: fostering
participatory culture by making music videos in a high school Scratch coding
workshop. Interactive Learning Environments. 23, 5 (2015), 613–633.

 18. Fields, D., Kafai, Y., Nakajima, T., Goode, J., and Margolis, J. Putting Making into High
School Computer Science Classrooms: Promoting Equity in Teaching and Learning
with Electronic Textiles in Exploring Computer Science. Equity & Excellence in
Education 51, 1 (2018), 21–35. doi: 10.1080/10665684.2018.1436998

 19. Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A., Weintrop,
D., and Harlow, D. Using Upper-Elementary Student Performance to Understand
Conceptual Sequencing in a Blocks-based Curriculum. in Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education - SIGCSE ’17.
(New York: ACM, 2017), 231–236. doi: 10.1145/3017680.3017760.

 20. Freire, P. Pedagogy of the oppressed. (USA: Bloomsbury Publishing, 2018).
 21. Giannakos, M., Jaccheri, L., and Proto, R. Teaching computer science to young

children through creativity: Lessons learned from the case of Norway. in
Proceedings of the 3rd Computer Science Education Research Conference on
Computer Science Education Research. (2013), 103–111.

 22. New London Group. A pedagogy of multiliteracies: Designing social futures.
Harvard educational review. 66, 1 (1996), 60–93.

 23. Grover, S. and Basu, S. Measuring Student Learning in Introductory Block-Based
Programming: Examining Misconceptions of Loops, Variables, and Boolean Logic.
in Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education - SIGCSE ’17. (New York: ACM Press, 2017), 267–272. doi:
10.1145/3017680.3017723.

 24. Grover, S., Basu, S., and Schank, P. What we can learn about student learning
from open-ended programming projects in middle school computer science.
in Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. (New York: ACM Press, 2018), 999–1004.

 25. Grover, S. and Pea, R. Computational Thinking in K–12: A Review of the State of the
Field. Educational Researcher 42, 1 (2013), 38–43. doi:10.3102/0013189X12463051.

 26. Haraway, D. Situated knowledges: The science question in feminism and the
privilege of partial perspective. Feminist studies. 14, 3 (1988), 575–599.

 27. Harel, I. Children designers. (Norwood, NJ: Ablex, 1990).
 28. Hautea, S, Dasgupta, S., and Hill, B. Youth Perspectives on Critical Data Literacies. in

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems -
CHI ’17. (New York: ACM Press, 2017), 919–930. doi: 10.1145/3025453.3025823.

 29. Ito, M., Gutiérrez, K., Livingstone, S., Penuel, B., Rhodes, J., Salen, K., Schor, J.,
Sefton-Green, J., and Watkins, S. Connected Learning: An agenda for research and
design. (Cork: Digital Media and Learning Research Hub, 2013).

 30. Jacob, S., and Warschauer, M. Computational Thinking and Literacy. Journal of
Computer Science Integration. 1, 1 (2018). doi: 10.26716/jcsi.2018.01.1.1

 31. Jamshidi, F. and Marghitu, D. Using Music to Foster Engagement in Introductory
Computing Courses. in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). (New York: ACM Press, 2019), 1278–1278.
doi: 10.1145/3287324.3293855.

 32. Jayathirtha, G., Kafai, Y., Lui, D., Shaw, M.,and Cho, J. Collaborative Coding and
Composing of JazzHands: Integrating the Learning of Advanced Computational
Concepts with Electronic Textiles to Make Music Wearables. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education. (New York: ACM
Press, 2019), 1274–1274.

 33. Kafai, Y. Minds in Play. (Norwood, NJ: Ablex, 1995).
 34. Kafai, Y. From computational thinking to computational participation in K–12

education. Communications of the ACM. 59, 8 (2016), 26–27.
 35. Kafai, Y., Fields,D., Lui, D., Walker, J., Shaw, M., Jayathirtha, G., Nakajima, T., Goode,

J., and Giang. M. Stitching the Loop with Electronic Textiles: Promoting Equity
in High School Students’ Competencies and Perceptions of Computer Science.
in Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. (New York: ACM Press, 2019), 1176–1182.

 36. Kafai, Y. and Vasudevan, V. Constructionist Gaming Beyond the Screen: Middle
School Students’ Crafting and Computing of Touchpads, Board Games, and
Controllers. In Proceedings of the Workshop in Primary and Secondary Computing
Education on ZZZ - WiPSCE ’15. (New York: ACM Press, 2015), 49–54. doi:
10.1145/2818314.2818334.

 37. Lachney, M., Babbitt, W., and Eglash, R. Software design in the ‘construction genre’
of learning technology: Content aware versus content agonistic. Computational
Culture: A Journal of Software Studies 5 (2016).

 38. Lee, C. and Garcia, A. “I Want Them to Feel the Fear...”: Critical Computational
Literacy as the New Multimodal Composition. in Exploring Multimodal Composition
and Digital Writing, edited by Ferdig, R. and Pytash, K. (Hershey, PA: Information
Science Reference, 2014), 364–378.

 39. Lee, C. and Soep, E. None But Ourselves Can Free Our Minds: Critical
Computational Literacy as a Pedagogy of Resistance. Equity & Excellence in
Education. 49, 4 (2016), 480–492. doi: 10.1080/10665684.2016.1227157.

 40. Maloney, J., Peppler, K., Kafai, Y., Resnick, M., and Rusk, N. Programming by Choice:
Urban Youth Learning Programming with Scratch. in Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’08). (New
York: ACM Press, 2008), 367–371. doi: 10.1145/1352135.1352260.

acm Inroads • inroads.acm.org  53

 71. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., and Wilensky, U.
Defining Computational Thinking for Mathematics and Science Classrooms. Journal
of Science Education and Technology. 25, 1 (2016), 127–147. doi: 10.1007/s10956-015-
9581-5.

 72. Weintrop,D., Killen, H., Munzar, T., and Franke, B. Block-based Comprehension:
Exploring and Explaining Student Outcomes from a Read-only Block-based
Exam. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19). (New York: ACM Press, 2019), 1218–1224. doi:
10.1145/3287324.3287348.

 73. Weintrop, D. and Wilensky, U. Using Commutative Assessments to Compare
Conceptual Understanding in Blocks-based and Text-based Programs. in
Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (ICER ’15). (New York: ACM Press, 2015), 101–110.
doi: 10.1145/2787622.2787721.

 74. Werner, L., Denner, J., and Campe, S. Children Programming Games: A Strategy for
Measuring Computational Learning. Transactions of Computing Education. 14, 4
(2014), 1–22. doi: 10.1145/2677091.

 75. Wing, J. Computational Thinking. Communications of the ACM. 49, 3 (2006), 33–35.
doi: 10.1145/1118178.1118215.

 76. Zaidi, R., Freihofer, I., and Townsend, G. Using Scratch and Female Role Models
While Storytelling Improves Fifth-Grade Students’ Attitudes Toward Computing.
in Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’17). (New York: ACM Press, 2017), 791–792. doi:
10.1145/3017680.3022451.

2018 JOURNAL
IMPACT FACTOR:

6.131

ACM Computing Surveys (CSUR)

Integration of computer science and engineering knowledge

ACM Computing Surveys (CSUR) publishes comprehensive,
readable tutorials and survey papers that give guided tours
through the literature and explain topics to those who seek to
learn the basics of areas outside their specialties. These carefully
planned and presented introductions are also an excellent way for
professionals to develop perspectives on, and identify trends in,
complex technologies.

For further information and to submit
your manuscript, visit csur.acm.org

Yasmin Kafai
Graduate School of Education
University of Pennsylvania
3700 Walnut Street, Philadelphia, PA 19104
kafai@upenn.edu

Chris Proctor
Graduate School of Education
Stanford University
485 Lausen Mall, Stanford, CA 94305
cproctor@cs.stanford.edu

Debora Lui
Graduate School of Education
University of Pennsylvania
3700 Walnut Street, Philadelphia, PA 19104
Ablui@gmail.com

From Proceedings of the 2019 ACM Conference on International Computing Education
Research. Reprinted with permission.
DOI: http://dx.doi.org/10.1145/3381887

