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ABSTRACT
The increased interest in promoting CS education for all has been
coalescing around the idea of "computational thinking." Several
framings for promoting computational thinking in K-12 education
have been proposed by practitioners and researchers that each
place different emphases on either (1) skill and competence build-
ing, (2) creative expression and participation, or (3) social justice
and ethics. We review each framing and how the framings struc-
ture the theory space of computational thinking. We then discuss
how CS education can leverage the explanatory potential that each
framing offers to the implementation and evaluation of learning,
teaching, and tools in computing education. Our goal is to help CS
education researchers, teachers, and designers unpack and leverage
the complexities of this theory space (rather than ignoring it) while
also addressing broader educational concerns regarding diversity,
providing new directions for how students and teachers can ac-
tively participate in designing their digital futures, and directing
current computing education efforts towards a more humanistic
orientation.
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1 INTRODUCTION
Promoting computer science education has become a global ini-
tiative with the goal to make it a 21st century literacy. Under the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’19, August 12–14, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6185-9/19/08. . . $15.00
https://doi.org/10.1145/3291279.3339400

umbrella of “computational thinking” [75], initiatives around the
world propose that every child should learn a core set of compu-
tational skills and use them across the curriculum as well as in
everyday life. Alongside the active debate over how (or whether)
to define computational thinking, hundreds of studies (e.g. [32, 59])
have investigated applications of computational thinking for K-12
CS education. Within these efforts, different theoretical perspec-
tives have become more visible, so much that Nelson and Ko [45]
have argued: "while theory can accelerate our fields’s progress and
increase its rigor, if not used carefully, it can also inhibit progress in
subtle but important ways" (p. 31). More specifically, Nelson and Ko
[45] argue that overreliance on educational theory within computer
science education research can inhibit the progress within the field
by dividing researchers’ attention between contributing to general
learning theory versus developing new designs, overshadowing
domain-specific educational knowledge, and introducing "theory
bias" in peer review.

While Nelson and Ko [45] highlight important concerns, we
take issue with the notion that any interpretation of learning and
thinking can be meaningful without considering its theoretical
underpinnings. Learning of any subject matter is framed through
various theoretical lenses—or metaphors as Sfard [61] argued—each
of which carry tacit assumptions and beliefs not only regarding
how people learn best, but also for why and for what purposes.
In turn, these theoretical perspectives consequently guide any in-
terpretation or understanding of instructional activities, actions
and tool designs. Rather than ignoring this intricate connection
between theory and design, we therefore advocate foregrounding
the diversity of theoretical perspectives in learning and teaching
that exist within K-12 CS education and research. Following Har-
away [26], our goal here is not to push any kind of ‘objective’ truth
about the best practices in CS Education, but rather to acknowledge
that all perspectives and approaches within the field are partial
and contingent. An intervention whose results appear lackluster
from one theoretical perspective might be profoundly impactful
from another. Only by recognizing these partial perspectives can
we truly reach critical transformational opportunities for K-12 CS
education and research.

Attention to educational theory is particularly important as mo-
mentum is growing behind Wing’s [75] argument: “to reading,
writing, and arithmetic, we should add computational thinking to
every child’s analytical ability” (p. 33). If computational thinking
is to become a new literacy [31, 36] added to the canon of textual,
mathematics and science literacies, we need to frame computational
thinking beyond an understanding of computational concepts and
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practices needed for digital content production, to include an un-
derstanding of the values, biases, and histories embedded in the
digital technologies. Becoming literate is not just about the prag-
matics of reading and writing text (or code) but also about how
these skills are inherently contextualized within particular personal
and political dimensions [58]. From this vantage point, if computa-
tional literacy is only configured as instrumental [69], it will miss
critical aspects that have emerged including inequities caused or
exacerbated by the societal impact of computing (e.g., [41]). While
much attention has been paid to the lack of diversity in practice
and participation in K-12 CS education, the diversity of theoretical
framings or lenses through which we design, examine, and evaluate
computing education has received far less scrutiny.

In this paper, we use the concept of computational thinking to
illustrate how theoretical framings direct our attention to differ-
ent, but equally important aspects in learning and teaching within
K-12 CS education. Theoretical framing is needed to articulate
educational goals, and therefore to evaluate the quality of peda-
gogical designs. We disagree with Nelson and Ko that there can be
a theory-free evaluation of learning, or that some designs can be
objectively better than others, outside of any theoretical framing.
As a first step, we identify and describe three prevalent framings
of computational thinking that we have found within the larger
landscape of CS education: (1) Cognitive computational thinking
seeks to provide students with an understanding of key computa-
tional concepts, practices, and perspectives thereby emphasizing
skill building and competencies which will be useful in college
and future careers; (2) Situated computational thinking stresses
personal creative expression and social engagement as a pathway
in becoming computationally fluent building on youth interest in
digital media and production; and (3) Critical computational think-
ing recognizes that computing is not an unequivocal social good,
and proposes an analytical approach to the values, practices, and
infrastructure underlying computation as part of a broader goal of
education for justice.

We illustrate each framing with examples from various studies
and discuss how these framings of computational thinking have
functioned as design heuristics that provide specific directives for
curricular initiatives that inform the design of learning and teaching
tools, materials and activities. We then consider how these framings
are an integral part of the larger theory space of efforts promoting
K-12 computational thinking and how they should be considered in
dialogue with one another rather than in opposition. Based on this
understanding, we offer suggestions for how to proceed forward
with a more holistic view of not only what computational thinking
should be, but also directions for it might be studied or taught
moving into the future.

2 THREE FRAMINGS OF COMPUTATIONAL
THINKING

Over a decade ago, Wing [75] proposed the term computational
thinking as “involving solving problems, designing systems and un-
derstanding human behavior that draws on concepts fundamental
to computing” (p. 33) to the CS community. Wing is certainly not
the first person to describe a skill set needed to design and imple-
ment computations—which has also been referred to as procedural

or algorithmic thinking [2]. Efforts to define computer science’s
unique ways of thinking and practicing are part of a “long quest”
within the discipline, aiming to distinguish itself from engineer-
ing and mathematics and developing its independent identity [64].
While some see computational thinking as specific to the discipline
[13], others such as Wing assign it more general purpose status
that is not necessarily tied to machines [11].

Settling these differences is beyond the scope of this paper, but
what is relevant to our work is how computational thinking has
been taken up within K-12 education. Papert [47] is credited with
introducing the term wanting “to integrate computational thinking
into everyday life” (p. 182). Papert and others envisioned early on
that computational ideas could serve as a tool for not only learning
mathematics [16] but also a wide range of other subjects in new
ways [1, 14, 62]. This general purpose application of computational
thinking garnered much traction in bringing the first wave of com-
puters into schools in the 1980’s but also generated considerable
critique because of its lack of empirical evidence for transfer [49].

In many of today’s national initiatives, standards, curricula, and
courses, computational thinking has again been adopted as a gen-
eral purpose skill which forms the basis for competence building
that all students need to learn [70]. This approach often ignores
other framings which provide different directions for designing
and understanding learning and teaching. Drawing on prominent
educational learning theories, we have broadly categorized these
other framings as situated and critical computational thinking. In
the following sections, our goal is to outline each framing of compu-
tational thinking and then to provide examples of how each framing
has been employed in current research studies. We describe how
research involving the same programming tool and context, Scratch
[53], asks different questions, seeks different learning outcomes,
and results in different curricular activities when computational
thinking is framed in different ways. Scratch is a block-based pro-
gramming language and community, which has attracted over ten
millions of kids in the creation of personalized projects, including
animations and video games, that are shared online. These distinct
framings of CT shape not only how activities using Scratch are
designed, but also what roles learners play, and what is valued in
terms of learning outcomes.

2.1 Cognitive computational thinking
The dominant framing of computational thinking, reflecting the ma-
jority of research in CS education [65], is cognitive. The cognitive
framing of computational thinking seeks to provide students with
an understanding of key computational concepts, practices, and per-
spectives [5] thereby emphasizing skill building and competencies
which will be useful in college and future careers. This direction
draws from cognitive research traditions that already dominated
efforts to introduce programming in the 1980’s (e.g. [63]). Here com-
putational thinking is seen as a form of problem solving performed
by individual students [25]. Instructional activities are developed to
introduce students to computational concepts like loops, recursion,
conditionals, and data structures, and practices such as iteration,
abstraction and automation, and responsible interactions. A large
number of related efforts also promote the integration of computa-
tional thinking into STEM disciplines [71]. Many national standards
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and curricula such as Code.org’s CS Discoveries [9] have adopted
this direction and mapped out learning progressions and pathways
for how students should develop computational thinking, starting
as early as kindergarten.

Most studies focused on student learning within Scratch have
highlighted this cognitive emphasis, looking at students’ under-
standing of foundational CS concepts. A large part of this research
has focused on assessment and evaluation of students’ program-
ming ability and comprehension of basic and advanced coding con-
structs (e.g., variables, conditional logic), through activities such as
think-aloud interviews, creating functional open-ended projects,
and engaging with design scenarios [5, 24]. Others have stressed
how the particular contexts of Scratch learning could promote
cognitive gains, for instance, looking at how block or text-based
programming languages can support learning of CS concepts in
different ways [72, 73], or how the specifics of interface and game
design on Scratch can be used to motivate and assess learning
of computational thinking concepts [74]. Although the cognitive
framing of computational thinking typically assesses learning on
an individual basis, it would be unfair to suggest that cognitive
approaches necessarily imply that instruction is isolated and decon-
textualized. On the contrary, most of these studies involve students
creating individual projects and artifacts rather than learning these
skills within artificially isolated contexts. However, the goal of all
of this activity is to increase individual comprehension of CS con-
cepts and competent programming performance, something that
distinguishes it from the next framing described below.

2.2 Situated computational thinking
An alternative proposition to the cognitive emphasis has been a
situated framing of computational thinking, which sees value in
students developing computational fluency through designing and
programming shareable digital artifacts. This framing draws from
constructionist [47] and connected learning theories [29], which
emphasize interest-driven and peer-supported activities. Here com-
putational thinking is seen as a vehicle for personal expression and
connecting with others alongside and intersecting a plurality of
other literacy practices [22]. Learning key computational concepts
and practices are often situated within the design of digital appli-
cations shared with authentic audiences in person or over social
networks. For these reasons, this approach has also been called
‘computational participation’ [8] in order to emphasize the social
purpose of computational designs and interactions in which learn-
ers engage. Efforts in this direction emerged largely from promoting
CS education outside of school in community technology centers
and online communities, and from a recognition that inequitable
access to opportunities to participate, develop interest, and have
one’s identities supported are a root cause of the lack of diversity
in computer science [41, 42]. Example curricula include the Cre-
ative Computing Guide [4] which situates students’ introduction to
computational thinking through a variety of game design and sto-
rytelling activities or Stitching the Loop [35] activities that engage
students in crafting and coding personalized electronic textiles.

This situated approach has become yet another popular area of
research within Scratch, which has emphasized the particular socio-
cultural contexts in which this activity occurs, thereby emphasizing

personal meaning and creative expression. Within some studies,
this focus is accomplished by explicitly pushing the link between
creativity and computing and working to broaden perspectives on
the field of Computer Science at-large. For instance, Giannakos,
Jaccheri, and Proto [21] developed a Scratch activity where chil-
dren worked alongside adults to create interactive artworks for
the purposeful goal of encouraging youth to become digital cre-
ators through programming. Related efforts have included situating
Scratchwithin the context of students’ other interests, includingmu-
sic [17, 31], storytelling [4, 76], or, most often, video games. These
approaches have resulted in tens of thousands of digital artifacts
created by children in the Scratch online community, referencing
popular commercial game franchises and narratives [36].

Emphasis on situated computational thinking in Scratch is addi-
tionally accomplished through highlighting the social interactions
therein, whether structuring forms of online collaboration and feed-
back through the site itself [21], sharing and creative remixing of
other people’s projects [8], or creating games and tangible con-
trollers that are explicitly meant to engage an in-person audience
[17]. While students’ comprehension of CS concepts and abilities
to program are important here, the main goal of these efforts is to
emphasize how computing is a tool that can be used to express stu-
dents’ interests and identities to others within their communities.
Notably, allowing personalized pathways into computing is meant
to engage individuals who might otherwise be excluded from the
field and explicitly done in an attempt to promote equity within
the field [60].

2.3 Critical computational thinking
Finally, critical computational thinking has emerged more recently
as another framing which places students’ computational think-
ing in the traditions of critical pedagogy, which emphasize both
an examination of and resistance to oppressive power structures
[20] and production-oriented media literacy, which highlights how
youth agency can be acquired through the process of creating and
disseminating media content [6, 44]. Here, computational think-
ing is seen as a potential channel for engaging with the political,
moral and ethical challenges of the world whether food insecu-
rity or gentrification through the production of digital, multimedia
products. In line with Paris’s [48] argument that truly supporting
marginalized students requires helping them to understand and
contest the forces which marginalize them, some researchers have
argued that situated computational thinking does not go far enough
in confronting forces such as racism and sexism [68]. Activities that
have adopted this approach include an afterschool project in which
youth interviewed residents and worked together with designers
and programmers to visualize gentrification in their neighborhood
[39], and a mobile app that would collate available out-of-school
programs and opportunities for youth living in under-resourced
communities [67]. Curricula such as Exploring Computer Science
[46] have additionally addressed some of these issues by design-
ing socially relevant and meaningful computation activities for
marginalized students.

In terms of Scratch, there have been far fewer efforts to promote
critical approaches to computational thinking, something which is
also true within the wider field of CT research. One notable effort
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in this direction are the aforementioned work of Lee and Soep [39],
which used Scratch in their efforts to push youth to “conceptualize,
create, and disseminate digital projects that break silences, expose
important truths, and challenge unjust systems” (p. 480). The goals
here were to design activities that supported students’ agency in
developing their own computational artifacts in order to address
personally relevant social justice issues, for instance, games that
highlight issues such as racial profiling and undocumented labor-
ers [43]. Importantly, the primary emphasis here was developing
critical content using computation that responds to structural is-
sues in the world (the ‘what’), rather pushing students to analyze
and understand the actual underlying infrastructure that supports
everyday computation (the ‘how’).

More recently however, there have been calls to expand critical
computational thinking such that it does focus on this second goal,
namely, ‘pulling back the curtain’ of the technological mechanisms
underlies our existing computational systems in order to understand
how these may cause inequities in and of itself [68]. This includes,
for instance, considering current event issues like how implicit
bias might be embedded in crime-prediction software that police
use, or how mass surveillance by social media can create openings
for election hacking [68]. We can see, therefore, how earlier work
in critical CT considered critical content creation as the primary
goal, with the “skill building in coding and design” ([39], p. 480)
as a desirable but secondary outcome, while the latter emphasis
highlights a cognitive understanding of underlying concepts of
CT and its uses in the world as key to becoming a more critical
practitioner of computation.

3 UNDERSTANDING THE THEORY SPACE OF
COMPUTATIONAL THINKING

Each framing offers valuable, but different insights into what learn-
ing and teaching computational thinking can and should be about.
One striking commonality is that the learning of computational
thinking within each of these three framings is often situated in
the context of designing applications such as instructional soft-
ware or games [33, 37] rather than learning code for its own sake.
This contextualization is a stark departure from how computational
thinking was taught during the first wave of computer science in
schools in the 1980s. At that time, if students engaged with comput-
ing at all, it was in the context of writing short programs in which
they learned computational concepts and practices, disconnected
from the rest of the curriculum, their personal media interests, or
any social relevance [55].

Where differences emerge between these three framings is how
they balance their goal of promoting basic programming compe-
tence and understanding (something that is necessary for all three
frameworks), with understanding how these skills can be used both
for personal/social enrichment and to address issues within the
world at-large. For instance, the emphasis in cognitive framings
is on individual competency with computational skills and knowl-
edge; building personal relationships with ideas is framed as part
of the design leading to learning, rather than the learning itself.
Situated framings center the construction of long-lasting and mean-
ingful relationships with CS—a critical feature for a STEM field
that historically has been an exclusive clubhouse [10]. But fostering

personal connections alone is no guarantee for inclusion as we
know from studies of online creative learning communities such
as Scratch where content is often lacking cultural relevance [40].
However, we do not argue that the expanding focus from cognitive
to situated to critical is simply progress toward better framings.
We know that participation alone will not guarantee that novice
programmers have access to key computational concepts [19] or
pathways into more advanced forms of computational participation
[18]. Likewise, designing social justice-focused applications [43]
takes advantage of the benefits of critical media production but does
not always guarantee more in-depth computational understanding
(one exception is [12].

While our discussion of different framings suggests equal rele-
vance, within CS education the framings have not received equal
attention: the cognitive framing by far outpaces other theoretical
approaches in published CS education research [65, 68]. One possi-
ble reason for this dominance of cognitive framings in CS education
is that when the first wave of research started in the 1980s, cogni-
tive theory had just gained traction for gaining better insights into
students’ thinking and problem solving across different academic
disciplines [27]. CS education researchers followed suit, most likely
finding resonance with the cognitive perspectives featuring the
individual mind as an information processing unit, not unlike a
computer itself. However, critics of cognitive educational research
have highlighted some of its weaknesses, namely that learning
is not just an individual enterprise but situated in social interac-
tions and contexts [41, 42]. This critique gave rise to new emphases
within educational research, namely a socio-cultural perspective
which recognizes the need for authentic learning practices—an as-
pect also highly valued by all—and the realization that learning is
about becoming a member of a community of practice with shared
goals and values.

Sfard [61] most clearly articulated these distinctions between
cognitive and situated framings of learning as two metaphors of “ac-
quisition” and “participation”, respectively, in educational learning
research. She pointed out how cognitive approaches treat knowl-
edge as a property that learners acquire since it focuses on individ-
uals, while situated approaches to learning see participation as a
key process in which knowledge is negotiated between members
of a community since it focuses on social interactions. While not
originally included in Sfard’s [61] analysis, critical approaches to
learning might add "action" to "acquisition" and "participation,"
emphasizing that what is learned and how it is learned and valued
reflects the particular norms, values, and power structures of a
society. When a society is unjust, education ought to be oriented to-
ward understanding and challenging injustice. We sought to make
visible the different epistemological commitments of each learning
perspective and how it related to the framings of computational
thinking, an overview of which is provided in Table 1.

Furthermore, rather than pitting the different metaphors and
framings against each other, we follow Sfard’s [61] conclusion that
we should embrace, and not ignore, other theoretical perspectives
in education research:

As researchers we seemed to be doomed to living in
a reality of variety of metaphors. We have to accept
the fact that the metaphors we use while theorizing
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Table 1: Overview of Learning Perspectives in Framing Computational Thinking

Frame Unit of Analysis Epistemology Priorities Computational Thinking
Cognitive Individual learners Skills, competen-

cies, knowledge of a
particular discipline

Measurable, trans-
ferrable skills, eco-
nomic opportunity

Computational concepts (algorithms,
abstraction) and practices (remixing, it-
eration)

Situated Communities of prac-
tice, activity systems,
learning ecologies

Practices, participation,
preparation for future
learning

Equity, interest, identity
development, creativity

Creating personally-meaningful appli-
cations, building communities, support-
ing social interactions, play

Critical Society at-large: exist-
ing structures of power,
privilege, and opportu-
nity (race, gender, social
class, ability)

Awareness of ideolo-
gies, strategies for so-
cial action

Justice, critical under-
standing, enacting so-
cial change

Understanding and critique of existing
computational infrastructures, creating
applications to promote thriving, aware-
ness, and activism

may be good enough to fit small areas, but none of
them suffice to cover the entire field. In other words,
we must satisfy ourselves with only local sensemak-
ing. A realistic thinker knows he or she has to give
up the hope that the little patches of coherence will
eventually combine into a consistent global theory.
It seems the sooner we accept the thought that our
work is bound to produce a patchwork of metaphors
rather than a unified, homogenous theory of learning,
the better for us and for those whose lives are likely
to be affected by our work (p. 12).

By putting these views into dialogue with one another, we can
acknowledge that each offers a partial perspective [26] that can
answer different questions about learning and teaching that can
lead us to a more full and complete picture of how we can suc-
ceed together in this space. Our proposal in moving forward is
to engage in the building of a “patchwork of metaphors” as Sfard
[61] suggested by putting the various framings into a more inclu-
sive dialogue rather than in exclusive opposition to each other. In
the following section, we discuss three examples—designing tools,
learning at scale, and teaching computing–—to illustrate what such
a dialogue could concretely look like.

4 PUTTING THE FRAMINGS IN DIALOGUE
We focus on how framings in conversation with one another can
create opportunities for us to examine computational thinking from
more than one perspective, ultimately building a more sophisticated
foundation for CS education research and practice. Our first exam-
ple illustrates different interpretations in understanding the same
programming tool for promoting critical data literacy, or analyt-
ical approaches to understanding how digital data is leveraged
and used online. In this study, researchers developed a new set of
“community blocks” in Scratch which explicitly makes transparent
the collection, calculation, and dissemination of participation data
common in many massive online communities that users could use
while programming their personal projects [12]. As the researchers
discovered, users of these blocks became more aware of numerous
issues surrounding how digital data is both gathered and used by
systems such as Scratch, including issues surrounding privacy and

data sharing and possible avenues for exclusion generated through
certain data-driven algorithms [28]. Within this study, we can see
how the different framings can contribute not only individually but
also collectively to a more sophisticated understanding of how com-
putational tools can assist in promoting computational thinking on
multiple levels.

In this scenario, the use of the blocks supported students’ cogni-
tive understanding since integration of the community blocks with
regular programming blocks to required a solid understanding of
computational concepts and programming practices. Evenwhen the
pedagogical goals are cognitive, situated approaches may be more
effective [51]. The community blocks also supported situated use
of Scratch, since users created customized projects with the blocks,
whether an ice cream visualization or dress-up game project that
used social metrics to determine the number of scoops or the project
viewer’s purchasing power [12]. Finally, these blocks were essential
in promoting critical engagement with CT, since they got users to
further consider the larger computing infrastructures in which they
engage everyday, for instance, questioning the intentions of Scratch
designers and other users in designing some community features
(e.g., friends, favorites), as well as the affordances and constraints
of different types of technology in controlling social interactions
online [28]. The design of community blocks in Scratch therefore
served as a tool that could promote goals within all three fram-
ings, something which might serve a model for future design and
analysis work.

Our second example leverages the different scales of analysis
promoted within each learning perspective and framing. Cognitive
framings of computational thinking can create opportunities for
us to think about what is happening at the level of an individual
learner, focusing specifically on their mental constructs and under-
standings. In contrast, situated computational thinking can allow
us to step back and consider what is occurring amongst multiple
people, whether within physical spaces like students in a classroom
making games for one another, or within digital space. Finally, criti-
cal computational thinking with its focus on societal structures can
allow us to zoom further out, considering how these individuals and
groups are situated within larger structures of capital, resources,
and ideologies spanning neighborhoods, nations, and globalized
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networks. While one can apply these different framings with other
kind of scales—–for example, considering the cognition of all ele-
mentary school students in the United States, or how an individual
becomes marginalized by her online social networks on the basis of
her race or ethnicity–—access to these multiple framings of CT can
give us new tools to not only ask but also answer these questions.

Consider an imaginary teen who is a regular participant in
library-based technology-focused afterschool program. A cogni-
tive framing would allow us to zero in on the mental processes of
this teen, looking to see how her actual activities (e.g., remixing
existing racing games) can support learning particular CS concepts.
A situated framing would allow us to step back to consider how
this teen’s work on Scratch can help her create connections online
(e.g., the siblings from Thailand whose games she’s remixed) and in-
person (e.g., showing off her game to her younger brother and his
friends). Finally, a critical framing would allow us to ask how this
particular afterschool program is situated within the larger network
of CS opportunities for this teen (e.g., if this is the first time she
has ever been given the opportunity to code, and if this motivates
her to recruit other people from her community into the program).
By considering these different framings in dialogue then, we can
look at the computing life of this teen from multiple scales, high-
lighting a more holistic perspective on her computational thinking
engagements (see Figure 1).

Finally, considering the three framings in dialogue with one an-
other allows CS education researchers and practitioners to take into
account multiple ways of teaching computational thinking. While
cognitive research on computational thinking has often considered
a ‘best practices’ approach toward teaching CS concepts and prac-
tices, considering all three perspectives can open up pedagogies of
computational thinking oriented to different but equally valid epis-
temologies. For instance, introducing particular CS concepts such
as loops, variables, and boolean logic might benefit from highly
scaffolded debugging activities, while promoting critical analyses
of online surveillance and privacy concerns might require another
approach of asking students to research their own personal engage-
ments with social media. Additionally, considering these framings
in tandem might also help us all to consider approaches toward
computing that have not yet been explored and developed.

Early work mostly took place within informal learning environ-
ments and emphasized creative expression with e-textiles, thereby
giving students free rein to explore existing projects and objects,
and incorporate their own interests into designing a personalized
artifact [11]. In critical examinations of e-textiles learning, we fo-
cused on their gendered nature [25] and relation to traditional
crafting practices [23]. Moving into the more formal environment
of computer science classrooms required a cognitive lens, looking
at students’ understanding of foundational computing concepts and
practices [7, 14] and developing a series of increasingly complex
projects [5, 11]. The examination of teaching practices adopted a
more situated framing of how teachers supported peer learning
and promoted personal expression when teaching CS concepts in
instructor consultations and prescribed milestones [5].

These examples illustrate how adopting a ‘patchwork ofmetaphors’
[61] could be useful for CS researchers, designers, and educators.
This is particularly important as CS moves into the K-12 space,

which is populated a diverse patchwork of priorities and stakehold-
ers. K-12 CS education advocates invoke a variety of rationales for
its importance [3], and recent efforts to design and implement K-12
CS suggest that implementations which fail to deeply engage with
this plurality of perspectives may encounter indifference or opposi-
tion [50]. We do not advocate that researchers abandon their episte-
mological commitments but rather suggest that they maintain their
distinct theoretical framings while also considering others. Having
multiple framings would allow their work to be understandable by
the broader community, making it easier to affirm areas of agree-
ment, and question assumptions in a mutually-comprehensible way.
This would go a long way in addressing central concerns about po-
tential theory bias voiced by Nelson and Ko [54]. Instead of trying
to limit ourselves to one-size-fits-all approach that aims to fulfill
the computational thinking needs of all students, we can focus on
which questions are important and which theories and methods
are best suited to address them.

5 CONCLUSIONS
Nelson and Ko’s concerns that overemphasis on theory building
may hinder innovation, understanding, and evaluation are impor-
tant and need to be addressed within the CS education research
community. However, we take issue with the implicit suggestion
that design could be pursued separately from theoretical engage-
ment. Sandoval’s [57] conjecture mapping distinguishes between
design conjectures (hypotheses about how a design might result
in mediating processes) and theoretical conjectures (hypotheses
about how mediating processes might result in learning outcomes).
In concrete terms, we can collect analytics about how students
use a programming interface to answer a design conjecture, but a
theoretical conjecture (supported by further evidence) is required
to support the claim that a particular kind of learning outcome
has occurred. Design-based research, as practiced in the learning
sciences, "often aims to innovate not just processes of instruction
but the kinds of outcomes desired from instruction” ([57] p. 24).

Furthermore, we argue that foregrounding theoretical perspec-
tives are what make the priorities and perspectives of diverse stake-
holders visible within the context of research and policy. The diver-
sity of perspectives on computational thinking is a resource, and
not a stumbling block, for understanding the complex ecologies in
which learning and teaching in CS education is situated. Placing an
individual research project’s framing within a broader theory space,
could make it possible to engage with legitimate and important
questions based in other framings.

In this paper, we unpacked different framings of computational
thinking that have been in use in the CS education community.
Rather than seeking conceptual unity in computational thinking,
we highlighted the different ontological commitments that cogni-
tive, situated and critical framings bring to computational thinking
and illustrated how these contextualize research with programming
tools, design of applications, and classroom implementations. Our
approach to theory dialogue is in line with recent efforts which
have proposed expanded framings of computational thinking such
as computational participation [34], computational making [56], or
computational action [66] and begin to cross the boundaries estab-
lished around each framing. For instance, computational action [66]

Session 4: Theory and Cognition ICER '19, August 12–14, 2019, Toronto, ON, Canada

106



Figure 1: Framings of computational thinking represent different scales of analysis

seeks to connect cognitive and critical aspects while computational
participation [34] connected situated and critical aspects.

We proposed that research on computational thinking should
make room for multiple framings and privilege interdisciplinary
perspectives. Ultimately, we believe our proposal of theory dialogue
is a matter of getting CS education researchers to understand the
different scales and perspectives in which they are working when
studying computational thinking. Recent calls for expanding com-
putational thinking into computational literacy [15, 30, 38, 52, 69]
potentially offer a construct which could accommodate the three
framings discussed in this paper. For example, diSessa’s [14] analy-
sis of literacy focuses on "material intelligence," or thinking with
a representational medium. His discussion of cognitive and social

aspects of material intelligence could easily be expanded to align
with the framings of computational thinking presented here.

However, if the CS education research community is to profit
from this shift, literacy ought to be used as the basis for dialogue,
not internecine battles. Scribner [58], writing in the context of the
so-called "literacy wars" between advocates of phonics and contex-
tualized whole-language instruction, chose to discuss literacy in
terms of metaphors instead of definitions. Like Sfard [61], Scrib-
ner argued that "conflicts and contradictions are intrinsic to...an
essentialist approach" ([58] p. 7). Ultimately, the tensions giving
rise to the these definitional questions indicate the growing societal
importance of computing and the maturation of the field of CS ed-
ucation research. "Points of view about literacy as a social good, as
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well as a social fact, form the ground of the definitional enterprise.
We may lack consensus on how best to define literacy because we
have differing views about literacy’s social purposes and values"
[58] (p. 8). Advancing computational literacy situates the learning
and teaching of computer science in broader, inherently-contested
questions about the role of education in a democratic society.
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