
How Broad is Computational Thinking?
A Longitudinal Study of Practices Shaping Learning in

Computer Science

Chris Proctor, Paulo Blikstein, Stanford University
Email: cproctor@stanford.edu, paulob@stanford.edu

Abstract: Computer science is becoming a mainstream school subject, yet we know relatively
little about teaching, learning, and assessing computer science at the primary and secondary
level. Few studies have followed the long-term trajectories of early computer science learners.
We present a longitudinal study of a school cohort (N=48) across a three-year computer
science curriculum in grades 6-8. We analyzed students' Scratch projects in terms of
elaboration and computational thinking content, and modeled their association with
performance on a summative open-ended assessment of computational thinking. Both metrics
were associated with performance on the summative task, but engagement had a much more
substantial effect. This supports the idea that early computer science experience should be
designed to support students in working on personally-meaningful projects. Developing
computational literacy practices may be more important for long-term growth in
computational thinking than a primary emphasis on content knowledge.

Introduction
Computer science is becoming a mainstream school subject in the United States. It is being incorporated as a
course in the regular curriculum (Goode & Margolis, 2011), in bite-size chunks (Wilson, 2014), and through
informal communities which partially overlap with schools. For example, Scratch 2.0 topped 350,000 monthly
active users for several months in 2017. The interest in computer science is spurred by a recognition of the
economic opportunities afforded by computing careers as well as our societal reliance on computational media
for commerce, news, work, and everyday social life. While pioneers in educational technology have argued for
computers in schools for decades, the last few years have seen several well-funded, broad-reaching initiatives.

The uptake has outpaced the research. We still know relatively little about teaching and learning
computer science at the primary and secondary level (Guzdial, 2008; Grover & Pea, 2013; Blikstein, 2018).
Two National Research Council reports (2010, 2011) sought to define the core practices of computer science
using the term computational thinking, but surfaced substantial disagreement on how broad to make the
definition and how it should be measured. Computational thinking certainly includes practices such as framing
problems in terms of computational models and working with algorithms, but should it also include literacy
practices enacted through computational media? These might include self-expression, collaboration, and
developing a critical consciousness. The K-12 CS Standards (2016) adopt a compromise position by naming
seven core computer science practices and designating four of them as computational thinking, "the heart of the
computer science practices" (2016, p. 67). The definition of computational thinking is arbitrary but it will have
real impacts on how computer science courses are assessed and taught. To find the most useful definition of
computational thinking, it would be helpful to have longitudinal accounts of how students learn computer
science over time. However, very little such research exists.

This paper presents a three-year longitudinal study exploring the extent to which middle-school
students' programming in Scratch predicts later computational thinking skill. We developed two metrics to
assess students' projects: elaboration measures how much students built out their projects, and computational
content measures how much students used core computer science ideas such as control flow, events, and
modularization. These metrics correspond to two different views on the nature of computational thinking: that it
is broadly inclusive of literacy practices, or that it is a narrower collection of disciplinary skills.

Background
In this study, we model long-term computer science learning as growth in computational thinking, a construct
whose definition is under active debate. One goal of the study is to compare alternative definitions of
computational thinking. One tradition following Papert (1980) sees computational thinking as the recruitment of
computers for problem-solving, but also for learning more broadly, including the learner's relationship to
knowledge and sociocultural factors. diSessa (2001) gives a three-part definition of computational literacy:
knowing how to interact with computational media (the material), the cognitive abilities supported by

computational media (the cognitive), and the social arrangements enacted through computational media (the
social). In this view, the work of a computer scientist is inseparable from how she positions herself socially,
establishes her competence, and participates in communities engaged in computational thinking practices.
Research on equity and inclusion in computer science (Margolis, 2003; Barron, 2004; Margolis et al, 2010;
Kafai & Peppler, 2011) tends to take this broader, practice-based view of computational thinking. These
practices include computational thinking-specific practices such as incremental and iterative development,
testing and debugging, reusing and remixing, abstracting and modularizing (Brennan & Resnick, 2012), as well
as related sociocultural practices such as collaborating, participating in an inclusive computational culture, and
communicating about computing (K-12 CS Framework, 2016).

Other researchers, largely within the field of computer science, define computational thinking more
narrowly, as the distinctive skills and knowledge gained through programming experience, and which comprise
the disciplinary subject matter of computer science. In this view, computational thinking is primarily concerned
with designing, using, and reasoning about computational models (Aho, 2011). Wing's argument that
computational thinking "represents a universally applicable attitude and skill set" (2006) frames a narrow set of
skills as widely applicable. In particular, the jobs-oriented argument for expanding access to computer science
tends to emphasize skills valuable to employers and not practices which deepen self-knowledge, civic
engagement, or critical awareness.

These epistemological stances lead to different ways of assessing computational thinking. Studies
focused on engagement, belonging, and participation in computational thinking practices tend to seek evidence
of learning by analyzing artifacts designed by students (Brennan & Resnick, 2012; Fields, et al, 2016),
interviewing students (Barron et al, 2013), and by asking students to engage in scenarios where students design
solutions (Brennan & Resnick, 2012) or fix solutions containing errors (Werner et al, 2012). Research adopting
the narrower definition of computational thinking tends to use positivistic definitions of the skills and
knowledge that make up computational thinking, and seek standardized assessments whose purpose is to
measure learning apart from students' situated practices (Tew & Guizdal, 2011; Tew & Dorn, 2013). Denning
(2017) argues for assessing students' competencies, which he defines as "ability accompanied by sensibilities."
Research comparing the effectiveness of different teaching tools or approaches often relies on un-situated
measures of learning to compare learning across contexts (Armoni, Meerbaum-Salant, & Ben-Ari, 2015;
Weintrop, 2016).

In this study, our goal was to measure the association between students' practices over time and their
computational thinking skills at the end of the three-year curriculum sequence. The summative assessment of
computational thinking (described in more detail below) required students to solve a computational problem
using any tools of their choice. Students were presented with multiple cases of the same problem with larger and
larger datasets, so that they became intractable without implementing an algorithmic solution. The practices
assessed were comfortably within all the definitions of computational thinking discussed above.

 Each of the metrics by which students' Scratch projects are evaluated may be seen as grounded in one
view of computational thinking. Elaboration measures how much detail students add to their projects, regardless
of whether it has anything to do with computer science concepts. Students who create elaborate projects are
likely imbuing them with personal significance and taking them up in their broader social practices. On the other
hand, the narrower view of computational thinking would view much of projects' elaboration as irrelevant.
Computational content measures the density of blocks that map directly to core computer science concepts. For
example, when a student's project contains a higher density of function definitions and function invocations, it is
reasonable to assume she is exploring modularity. By comparing the association of each metric with students'
later performance on the summative computational thinking task, this study explores which practices contribute
to long-term growth in computational thinking.

Methods
The participants in this study were a cohort of students at an independent all-girls' middle school in the western
United States, where computer science is a core required class for all three years. The teaching philosophy of the
school and the computer science classes is constructionist (Papert, 1981). During much of their school day,
students work on personally meaningful projects (Papert, 1991) using tools ranging from one-to-one laptops to
the school woodshop and metal-working shop. They are accustomed to seeking help from each other, from
teachers, and from other resources at school and online. While some tests and quizzes are given, most
summative assessments take the form of projects, presentations, portfolios, and reflections. Teachers give
narrative evaluation rather than letter grades, and student self-assessment appears on report cards alongside
teachers' evaluations. This school environment makes it more likely that students' projects embody authentic
practices and that their performance on the summative task reflects their full capabilities.

Figure 1. Middle-school computer science curriculum showing study measures.

We collected student work and written reflections from this cohort throughout their three years of
computer science, and gave them a summative assessment at the end of 8th grade. Students worked primarily in
Scratch in 6th and 7th grade. Each of the three projects analyzed from each student was the result of a
curriculum unit spanning 4-6 weeks. At the end of each unit, students' projects were assessed on the use of
computational thinking concepts such as control flow, events, using variables to process data, and decomposing
problems with subroutines. Students also shared their projects in class and informally through their networks of
followers on Scratch. Thus, in their projects, students had an incentive to attend to both subject-matter goals and
to the enactment of literacy practices such as self-positioning, attending to audience, and taking up and
interpreting socially-important narratives.

Students transitioned to working in Python in 7th and 8th grades (See Figure 1). Accompanying the
change in programming interface was a change in emphasis from personal expression and narrative (and closer
integration with their humanities classes) to modeling and conceptual exploration (and closer integration with
mathematics and science classes). The summative assessment was distant from students' Scratch projects not
just chronologically, but also in terms of the problem domains with which they were engaging. 48 of 67 students
returned consent forms and were included in the study.

Measures

Scratch
We evaluated Scratch projects on two dimensions. Elaboration is defined the natural log of the total number of
blocks in the project. Computational content is defined as the ratio of blocks from certain categories (data,
events, control, sensing, and functions) to the total number of blocks (Brennan & Resnick, 2012). These two
dimensions capture different kinds of interactions students had with their projects: sometimes students created
detailed images or narratives, using many blocks in a straightforward (often sequential) manner. Other times,
students were more focused on how their projects worked than on the end result, and tended to have fewer
blocks but more concise and expressive code.

To analyze the projects, we wrote a Python package which fetches a representation of a project from
the Scratch backend server and then maps each sprite, script, statement, and expression to a Python class
instance, similar to the approach used by Fields et al (2016). Figure 2 shows elaboration and computational
thinking distributions for each of the three Scratch projects analyzed. We calculated an elaboration and
computational content score for each student by averaging the student's normalized score on the metric from
each of the three projects. In the first two projects students worked from models and starter code provided by the

Figure 2. Elaboration and computational thinking content in three Scratch projects.

teacher. Using normalized values allowed us to exclude the starter code from analysis, and to weight students'
work equally across the three projects. Each of these metrics represents a hypothesis about what might lead to
long-term effects: the extent of block-based programming practice, or the richness of the practice in terms of
computational content.

The final project, Drawing, provided students with the least scaffolding and therefore it is unsurprising
that it has greater variance on both metrics than those preceding it. In this project, students were asked to create
any drawing of their choice in Scratch, but the focus of the unit was on abstraction and modularization, and one
of the evaluation criteria was students' use of functions and data to reuse code. The negative association between
elaboration and computational content in this project corresponds with the intuition that code which makes
effective use of data, control structures, and functions will be able to achieve a desired effect with fewer blocks.
Projects with high computational content built up more complex drawing routines from reusable
subcomponents, while some projects with low computational content also created elaborate effects, but they did
so using hundreds of blocks effectively encoding point-to-point vector drawings. Figures 3 and 4 show two
students' drawings and excerpts from project code.

Figure 3. A student project with low computational content (z= -2.03) and high elaboration (z=1.49).

Figure 4. A student project with high computational content (z=1.40) and medium elaboration (z=0.34).

Figure 3 is characteristic of low computational content projects; the code excerpt shows superficial use
of functions to break the program into subroutines, but the program itself is essentially a long sequence of
imperative commands. At the same time, this is a self-portrait executed in code, in which the student depicts a
detailed facial expression, gesture, hair, and clothing by using far more blocks than most projects. The student
may have felt high social significance in each line's placement. Figure 4, meanwhile, depicts a nondescript scene
very similar to the model drawn by the teacher in introducing the project. This student appears to have put her
energy into the structure of her project rather than its final project; the code excerpt shows an elegant use of
nested subroutines with arguments. Her project is almost entirely composed of function definitions and
invocations; accordingly, her project's computational content was among the highest in the class.

Summative computational task
At the end of the 8th grade year, we gave students an open-ended computational task over the course of two 45-
minute class periods and analyzed the extent to which students used computational thinking to solve the task.
The task presented students with a list of items for sale at a store, and asked students to spend a specified
amount of money on exactly two items. There were six cases of the problem which only varied by the amount of
money to spend and the length of the price list. The early cases could easily be completed by hand; the later
cases had so many possibilities that they were intractable without the use of a computer. Then there were two
final variations: a case in which three items should be purchased and a case in which two items must be
purchased which added up to a certain price and to a certain weight. Students were provided each problem as a
handout and were also given links to a starter Scratch and Python project initialized with the data. Students were
encouraged to approach the problem as a fun puzzle, freely requesting help from their teachers and peers, and
using any strategies of their choice. There was no grade, reward, or recognition attached to students'
performance. At the end of each class session, students completed a survey in which they explained their work.

Prior experience
Finally, we attempted to control for prior experiences by including two additional factors in some models. At the
beginning of sixth grade, students began by completing a series of puzzles called Carol the Robot. In these
puzzles, students wrote instructions to guide a robot through a maze to collect beacons without hitting walls. We
used students' scores on this task as a measure of prior computational thinking skill. Additionally, at the end of
sixth grade, students' teachers were asked to estimate their general quantitative skills.

Analysis
We developed a rubric to evaluate students' use of computational thinking on the summative task (See Table 1).
The rubric focuses on the core computational thinking practices of framing the problem, designing an
algorithmic approach, and using a computer to implement it. In evaluating students on the rubric, we used their
final submissions and their reflections, in which they explained and justified the approach they took to the
problem. Scoring students solely on the number of cases students solved would not have been an adequate
measure of computational thinking because some industrious students spent the entire 90 minutes doing tedious
but occasionally lucky guess-and-check, while other students developed computational solutions which failed
due to bugs. The least successful students used manual guess-and-check with no indication of a systematic
approach; the most successful students developed correct, generalized solutions in Scratch or Python. Of the
students who used programming, most used Python; only three chose to use Scratch (two of whom were
successful). We were surprised at the diversity of students' approaches. Many used ad-hoc computational tools
such as Excel to sort the numbers in a list or Word's search feature as part of an otherwise-manual strategy.

Table 1. Rubric used to evaluate students' use of computational thinking in the summative task.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Worked by hand
or using a
calculator. No
evidence of a
computational
strategy. (Ex:
guessed pairs of
numbers over
and over)

Worked by hand
or using a
calculator. Used
a computational
strategy. (Ex:
decomposed the
problem;
systematically
tested cases)

Used an ad-hoc
tool (Ex: Word,
Excel) to
implement a
computational
strategy (Ex:
decomposed the
problem; sorting;
searching)

Attempted to
implement an
algorithm using
Scratch or
Python, but did
not solve all the
two-item cases.

Successfully
implemented an
algorithm using
Scratch or
Python to solve
all the two-item
cases.

Successfully
implemented a
generalized
algorithm
solving a more
complex case as
well.

Having defined metrics for students' Scratch projects and the summative measure, we used standard
OLS linear regression to estimate the association between students' block-based programming practices and
their performance on the summative task. Because our dependent variable is ordinal, we assume the rubric
measures a latent, continuous random variable. This analysis treats the rubric categories as evenly-spaced
intervals, an assumption we are comfortable making because the score distribution approximates a normal
distribution (M=2.75; SD=1.47; skew=-0.22; kurtosis=-0.81). For each of the two dimensions on which we
analyzed students' Scratch projects, we used the average normalized score across the three projects.

Results
We found that both elaboration (r=0.512) and computational content (r=0.322) in block-based programming
were positively correlated with higher performance on the summative assessment several years later. However,
we found that project elaboration was a much more important metric (See Table 2). Computational content is
also not a statistically significant predictor of summative scores when outliers are removed. The effects
remained largely unchanged when controlling for prior computational thinking skill and teachers' estimates of
quantitative skill. Figure 5 plots each metric against summative performance.

Table 2. Regression effect sizes (and p-values) predicting summative performance.

computational content elaboration prior ct (Carol the Robot) prior quantitative

0.80 (0.035)

1.21 (0.001)

0.57 (0.094) 1.10 (0.001)

0.55 (0.11) 1.14 (0.001) -0.14 (0.427)

0.01 (0.074) 1.01 (0.003) -0.21 (0.236) 0.49 (0.118)

Figure 5. Scores for each metric plotted against summative scores with regression and 95% confidence interval.

Discussion
We found that students who engage more deeply in creating Scratch projects, measured in either of two ways,
are significantly more likely to perform well on a test of computational thinking skill several years later, even
though all but three students chose to use tools other than Scratch in the summative assessment. Prior research
has found little evidence of novices learning across programming interfaces (Armoni, Meerbaum-Salant, and
Ben-Ari, 2015; Weintrop, 2016). There is also little evidence that programming experience develops generalized
mental functions (Pea & Kurland, 1984), or for far transfer of thinking skills more generally (Barnett & Ceci,
2002). Our findings are an important result in an area where very little longitudinal research is available.

Comparing the two metrics of students' Scratch projects, we were surprised to find that students' project
elaboration was much more associated with summative scores than computational content. This supports the
idea that early computer science experience should be designed to support students in working on robust and
sustained programming projects. Working on personally-meaningful projects may be more important than
ensuring all students have a uniform foundation in basic computer science concepts. This is well-aligned with

sociocultural research showing the importance of supporting the development of student interest and
identification with computer science, particularly for marginalized students. Students need to feel a sense of
belonging to learn effectively, and computer science is pervasively stereotyped as being a subject most suitable
for white, male, high-achieving students (Margolis 2003; Margolis et al, 2010) Fostering communities of
creative media production can help to dismantle stereotypes and increase participation (Kafai & Peppler, 2011).
The importance of these literacy practices is not reflected in several national initiatives to teach computer
science. Future research on the reflections and self-assessments students submitted with their projects will allow
us to corroborate our interpretation of the elaboration metric and to study students' process as well as product.

Our findings suggest that computational literacy practices are associated with long-term growth in
computational thinking, even under the narrower definition of computational thinking. While the definition of
computational thinking is arbitrary, our study suggests that students' sociocultural practices may play an
important role in learning even core computer science content. Therefore, a broader definition, which recognizes
computational thinking as a situated set of practices, might be the most useful. This is in line with Kafai &
Burke's (2013) call to reframe computational thinking as computational participation, and diSessa's (2017)
argument for extending computational thinking to computational literacy.

Conclusions
This study offers one of the only longitudinal accounts of early computer science learning, and provides strong
evidence that students' programming practices lead to long-term growth in computational thinking. The breadth
of our central construct, computational thinking, is still taking shape. This study also offers an empirical
exploration of the effects of operating under different definitions of computational thinking. In subsequent
research, we intend to strengthen these claims by analyzing this cohort's reflective writing and self-assessment
over the course of their middle-school experience learning computer science.

Acknowledgements
Funding for this study was provided by the Lemann Center for Entrepreneurship and Educational Innovation in
Brazil. We are grateful to the students and teachers who shared their time with us to make this study possible.

References
Aho, A. V. (2011). Ubiquity symposium: Computation and computational thinking. Ubiquity, 2011(January), 1.
Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: blocks and beyond.

Communications of the ACM, 60(6), 72-80.
Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer.

Psychological bulletin, 128(4), 612.
Barron, B. (2004). Learning ecologies for technological fluency: Gender and experience differences. Journal of

Educational Computing Research, 31(1), 1-36.
Barron, B., Wise, S., & Martin, C. K. (2013). Creating within and across life spaces: The role of a computer

clubhouse in a child’s learning ecology. In LOST Opportunities (pp. 99-118). Springer Netherlands.
Bell, T. C., Witten, I. H., Fellows, M. R., Adams, R., & McKenzie, J. (2015). CS Unplugged: An Enrichment

and extension programme for primary-aged students.
Blikstein, P. (2018). Pre-College Computer Science Education: A Survey of the Field. Mountain View, CA:

Google LLC.
Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of

computational thinking. In Proceedings of the 2012 annual meeting of the American Educational
Research Association, Vancouver, Canada (pp. 1-25).

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-computer scientists.
Unpublished manuscript.

CSTA Standards Task Force. (2011). CSTA K-12 computer science Standards.
Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM,

60(6), 33-39.
diSessa, A. A. (2017, June). What If Your Project's Timeline is a 100 Years?: Reflections on Computational

Literacies. In Proceedings of the 2017 Conference on Interaction Design and Children (pp. 1-2). ACM.
Fields, D. A., Quirke, L., Amely, J., & Maughan, J. (2016, February). Combining big data and thick data

analyses for understanding youth learning trajectories in a summer coding camp. In Proceedings of the
47th ACM technical symposium on computing science education (pp. 150-155). ACM.

Franklin, D., Conrad, P., Aldana, G., & Hough, S. (2011, March). Animal tlatoque: attracting middle school
students to computing through culturally-relevant themes. In Proceedings of the 42nd ACM technical
symposium on Computer science education (pp. 453-458). ACM.

Fraser, N. (2013). Blockly: A visual programming editor. https://developers.google.com/blockly/
Goode, J., & Margolis, J. (2011). Exploring computer science: A case study of school reform. ACM

Transactions on Computing Education (TOCE), 11(2), 12.
Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field. Educational

Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051
Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM, 51(8), 25.
K–12 computer science Framework. (2016). Retrieved from http://www.k12cs.org.
Kafai, Y. B., & Burke, Q. (2013, March). The social turn in K-12 programming: moving from computational

thinking to computational participation. In Proceeding of the 44th ACM technical symposium on
computer science education (pp. 603-608). ACM.

Kafai, Y. B., & Peppler, K. A. (2011). Youth, technology, and DIY: Developing participatory competencies in
creative media production. Review of research in education, 35(1), 89-119.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM Computing Surveys, 37(2), 83-137.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice: urban youth
learning programming with scratch (Vol. 40, No. 1, pp. 367-371). ACM.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. MIT press.
Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2010). Stuck in the shallow end: Education, race,

and computing. MIT Press.
National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking.

National Academies Press.
National Research Council. (2011). Report of a workshop on the pedagogical aspects of computational thinking.

National Academies Press.
National Research Council. (2013). Next generation science standards: For states, by states.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc..
Papert, S. (1991). Situating Constructionism. Constructionism. I. Harel and S. Papert. Norwood.
Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New ideas in

psychology, 2(2), 137-168.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009).

Scratch: programming for all. Communications of the ACM, 52(11), 60-67.
Sivilotti, P. A., & Laugel, S. A. (2008, March). Scratching the surface of advanced topics in software

engineering: a workshop module for middle school students. In ACM SIGCSE Bulletin (Vol. 40, No.
1, pp. 291-295). ACM.

Tew, A. E., & Guzdial, M. (2011, March). The FCS1: a language independent assessment of CS1 knowledge. In
Proceedings of the 42nd ACM technical symposium on Computer science education (pp. 111-116).
ACM.

Tew, A. E., & Dorn, B. (2013). The case for validated tools in computer science education research. Computer,
46(9), 60-66.

Weintrop, D. (2016). Modality Matters: Understanding the Effects of Programming Language Representation in
High School computer science Classrooms (Doctoral dissertation, Northwestern University).

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology, 25(1), 127-147.

Weintrop, D., & Wilensky, U. (2015, June). To block or not to block, that is the question: students' perceptions
of blocks-based programming. In Proceedings of the 14th International Conference on Interaction
Design and Children (pp. 199-208). ACM.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The fairy performance assessment:
measuring computational thinking in middle school. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education (pp. 215-220). ACM.

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulations of knowledge disciplines through new
representational forms. Constructionism.

Wilson, C. (2014). Hour of code: we can solve the diversity problem in computer science. ACM Inroads, 5(4),
22-22.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

	Introduction
	Background
	Methods
	Measures
	Scratch
	Summative computational task
	Prior experience

	Analysis

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

