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Abstract: Computer science is becoming a mainstream school subject, yet we know relatively
little about teaching, learning, and assessing computer science at the primary and secondary
level. Few studies have followed the long-term trajectories of early computer science learners.
We present  a  longitudinal  study  of  a  school  cohort  (N=48)  across  a  three-year  computer
science  curriculum  in  grades  6-8.  We  analyzed  students'  Scratch  projects  in  terms  of
elaboration  and  computational  thinking  content,  and  modeled  their  association  with
performance on a summative open-ended assessment of computational thinking. Both metrics
were associated with performance on the summative task, but engagement had a much more
substantial effect.  This supports the idea that early computer science experience should be
designed  to  support  students  in  working  on  personally-meaningful  projects.  Developing
computational  literacy  practices  may  be  more  important  for  long-term  growth  in
computational thinking than a primary emphasis on content knowledge. 

Introduction
Computer science is becoming a mainstream school subject in the United States. It is being incorporated as a
course in the regular curriculum (Goode & Margolis, 2011), in bite-size chunks (Wilson, 2014), and through
informal communities which partially overlap with schools. For example, Scratch 2.0 topped 350,000 monthly
active users for several months in 2017. The interest in computer science is spurred by a recognition of the
economic opportunities afforded by computing careers as well as our societal reliance on computational media
for commerce, news, work, and everyday social life. While pioneers in educational technology have argued for
computers in schools for decades, the last few years have seen several well-funded, broad-reaching initiatives.  

The  uptake  has  outpaced  the  research.  We still  know relatively  little  about  teaching  and  learning
computer science at the primary and secondary level (Guzdial, 2008; Grover & Pea, 2013; Blikstein, 2018).
Two National Research Council reports (2010, 2011) sought to define the core practices of computer science
using  the  term  computational  thinking,  but  surfaced  substantial  disagreement  on  how  broad  to  make  the
definition and how it should be measured. Computational thinking certainly includes practices such as framing
problems in terms of computational models and working with algorithms, but should it also include literacy
practices  enacted  through  computational  media?  These  might  include  self-expression,  collaboration,  and
developing a critical consciousness. The K-12 CS Standards (2016) adopt a compromise position by naming
seven core computer science practices and designating four of them as computational thinking, "the heart of the
computer science practices" (2016, p. 67). The definition of computational thinking is arbitrary but it will have
real impacts on how computer science courses are assessed and taught. To find the most useful definition of
computational  thinking,  it  would be helpful  to  have  longitudinal  accounts  of  how students  learn  computer
science over time. However, very little such research exists. 

This  paper  presents  a  three-year  longitudinal  study  exploring  the  extent  to  which  middle-school
students'  programming in Scratch  predicts  later  computational  thinking skill.  We developed two metrics  to
assess students' projects: elaboration measures how much students built out their projects, and computational
content measures  how much students  used  core  computer  science  ideas  such  as  control  flow,  events,  and
modularization. These metrics correspond to two different views on the nature of computational thinking: that it
is broadly inclusive of literacy practices, or that it is a narrower collection of disciplinary skills. 

Background
In this study, we model long-term computer science learning as growth in computational thinking, a construct
whose  definition  is  under  active  debate.  One  goal  of  the  study  is  to  compare  alternative  definitions  of
computational thinking. One tradition following Papert (1980) sees computational thinking as the recruitment of
computers  for  problem-solving,  but  also  for  learning  more  broadly,  including  the  learner's  relationship  to
knowledge and sociocultural  factors.  diSessa (2001) gives a  three-part  definition of  computational  literacy:
knowing  how  to  interact  with  computational  media  (the  material),  the  cognitive  abilities  supported  by



computational media (the cognitive), and the social arrangements enacted through computational media (the
social). In this view, the work of a computer scientist is inseparable from how she positions herself socially,
establishes  her  competence,  and  participates  in  communities  engaged  in  computational  thinking  practices.
Research on equity and inclusion in computer science (Margolis, 2003; Barron, 2004; Margolis et al, 2010;
Kafai  &  Peppler,  2011)  tends  to  take  this  broader,  practice-based  view of  computational  thinking.  These
practices  include  computational  thinking-specific  practices  such  as  incremental  and  iterative  development,
testing and debugging, reusing and remixing, abstracting and modularizing (Brennan & Resnick, 2012), as well
as related sociocultural practices such as collaborating, participating in an inclusive computational culture, and
communicating about computing (K-12 CS Framework, 2016). 

Other researchers, largely within the field of computer science, define computational thinking more
narrowly, as the distinctive skills and knowledge gained through programming experience, and which comprise
the disciplinary subject matter of computer science. In this view, computational thinking is primarily concerned
with  designing,  using,  and  reasoning  about  computational  models  (Aho,  2011).  Wing's  argument  that
computational thinking "represents a universally applicable attitude and skill set" (2006) frames a narrow set of
skills as widely applicable. In particular, the jobs-oriented argument for expanding access to computer science
tends  to  emphasize  skills  valuable  to  employers  and  not  practices  which  deepen  self-knowledge,  civic
engagement, or critical awareness. 

These  epistemological  stances  lead  to  different  ways  of  assessing  computational  thinking.  Studies
focused on engagement, belonging, and participation in computational thinking practices tend to seek evidence
of  learning  by  analyzing  artifacts  designed  by  students  (Brennan  &  Resnick,  2012;  Fields,  et  al,  2016),
interviewing students  (Barron et al, 2013), and by asking students to engage in scenarios where students design
solutions (Brennan & Resnick, 2012) or fix solutions containing errors (Werner et al, 2012). Research adopting
the  narrower  definition  of  computational  thinking  tends  to  use  positivistic  definitions  of  the  skills  and
knowledge  that  make  up  computational  thinking,  and  seek  standardized  assessments  whose  purpose  is  to
measure learning apart from students' situated practices (Tew & Guizdal, 2011; Tew & Dorn, 2013). Denning
(2017) argues for assessing students' competencies, which he defines as "ability accompanied by sensibilities."
Research  comparing  the  effectiveness  of  different  teaching  tools  or  approaches  often  relies  on  un-situated
measures  of  learning  to  compare  learning  across  contexts  (Armoni,  Meerbaum-Salant,  &  Ben-Ari,  2015;
Weintrop, 2016). 

In this study, our goal was to measure the association between students' practices over time and their
computational thinking skills at the end of the three-year curriculum sequence. The summative assessment of
computational thinking (described in more detail below) required students to solve a computational problem
using any tools of their choice. Students were presented with multiple cases of the same problem with larger and
larger datasets, so that they became intractable without implementing an algorithmic solution. The practices
assessed were comfortably within all the definitions of computational thinking discussed above. 

 Each of the metrics by which students' Scratch projects are evaluated may be seen as grounded in one
view of computational thinking. Elaboration measures how much detail students add to their projects, regardless
of whether it has anything to do with computer science concepts. Students who create elaborate projects are
likely imbuing them with personal significance and taking them up in their broader social practices. On the other
hand,  the narrower  view of computational  thinking would view much of projects'  elaboration as  irrelevant.
Computational content measures the density of blocks that map directly to core computer science concepts. For
example, when a student's project contains a higher density of function definitions and function invocations, it is
reasonable to assume she is exploring modularity. By comparing the association of each metric with students'
later performance on the summative computational thinking task, this study explores which practices contribute
to long-term growth in computational thinking. 

Methods
The participants in this study were a cohort of students at an independent all-girls' middle school in the western
United States, where computer science is a core required class for all three years. The teaching philosophy of the
school and the computer science classes is constructionist (Papert, 1981). During much of their school day,
students work on personally meaningful projects (Papert, 1991) using tools ranging from one-to-one laptops to
the school woodshop and metal-working shop. They are accustomed to seeking help from each other,  from
teachers,  and  from  other  resources  at  school  and  online.  While  some  tests  and  quizzes  are  given,  most
summative  assessments  take  the  form  of  projects,  presentations,  portfolios,  and  reflections.  Teachers  give
narrative evaluation rather  than letter  grades,  and student self-assessment appears  on report  cards alongside
teachers' evaluations. This school environment makes it more likely that students' projects embody authentic
practices and that their performance on the summative task reflects their full capabilities. 



Figure 1. Middle-school computer science curriculum showing study measures.

We collected student work and written reflections from this cohort  throughout their three years  of
computer science, and gave them a summative assessment at the end of 8th grade. Students worked primarily in
Scratch  in  6th  and  7th  grade.  Each  of  the  three  projects  analyzed  from each  student  was  the  result  of  a
curriculum unit spanning 4-6 weeks. At the end of each unit, students' projects were assessed on the use of
computational thinking concepts such as control flow, events, using variables to process data, and decomposing
problems with subroutines. Students also shared their projects in class and informally through their networks of
followers on Scratch. Thus, in their projects, students had an incentive to attend to both subject-matter goals and
to  the  enactment  of  literacy  practices  such  as  self-positioning,  attending  to  audience,  and  taking  up  and
interpreting socially-important narratives.  

Students transitioned to working in Python in 7th and 8th grades (See Figure 1). Accompanying the
change in programming interface was a change in emphasis from personal expression and narrative (and closer
integration with their humanities classes) to modeling and conceptual exploration (and closer integration with
mathematics and science classes). The summative assessment was distant from students' Scratch projects not
just chronologically, but also in terms of the problem domains with which they were engaging. 48 of 67 students
returned consent forms and were included in the study. 

Measures

Scratch
We evaluated Scratch projects on two dimensions. Elaboration is defined the natural log of the total number of
blocks in the project.  Computational content  is defined as  the ratio of blocks from certain categories (data,
events, control, sensing, and functions) to the total number of blocks (Brennan & Resnick, 2012). These two
dimensions capture different kinds of interactions students had with their projects: sometimes students created
detailed images or narratives, using many blocks in a straightforward (often sequential) manner. Other times,
students were more focused on how their projects worked than on the end result, and tended to have fewer
blocks but more concise and expressive code. 

To analyze the projects, we wrote a Python package which fetches a representation of a project from
the Scratch  backend  server  and then maps each  sprite,  script,  statement,  and expression  to  a  Python class
instance, similar to the approach used by Fields et al (2016). Figure 2 shows elaboration and computational
thinking  distributions  for  each  of  the  three  Scratch  projects  analyzed.  We  calculated  an  elaboration and
computational content score for each student by averaging the student's normalized score on the metric from
each of the three projects. In the first two projects students worked from models and starter code provided by the

Figure 2. Elaboration and computational thinking content in three Scratch projects.



teacher. Using normalized values allowed us to exclude the starter code from analysis, and to weight students'
work equally across the three projects. Each of these metrics represents a hypothesis about what might lead to
long-term effects: the extent of block-based programming practice, or the richness of the practice in terms of
computational content. 

The final project, Drawing, provided students with the least scaffolding and therefore it is unsurprising
that it has greater variance on both metrics than those preceding it. In this project, students were asked to create
any drawing of their choice in Scratch, but the focus of the unit was on abstraction and modularization, and one
of the evaluation criteria was students' use of functions and data to reuse code. The negative association between
elaboration and  computational content in this project  corresponds with the intuition that code which makes
effective use of data, control structures, and functions will be able to achieve a desired effect with fewer blocks.
Projects  with  high  computational  content  built  up  more  complex  drawing  routines  from  reusable
subcomponents, while some projects with low computational content also created elaborate effects, but they did
so using hundreds of blocks effectively encoding point-to-point vector drawings.  Figures 3 and 4 show two
students' drawings and excerpts from project code. 

Figure 3. A student project with low computational content (z= -2.03) and high elaboration (z=1.49).

Figure 4. A student project with high computational content (z=1.40) and medium elaboration (z=0.34).



Figure 3 is characteristic of low computational content projects; the code excerpt shows superficial use 
of functions to break the program into subroutines, but the program itself is essentially a long sequence of 
imperative commands. At the same time, this is a self-portrait executed in code, in which the student depicts a 
detailed facial expression, gesture, hair, and clothing by using far more blocks than most projects. The student 
may have felt high social significance in each line's placement. Figure 4, meanwhile, depicts a nondescript scene
very similar to the model drawn by the teacher in introducing the project. This student appears to have put her 
energy into the structure of her project rather than its final project; the code excerpt shows an elegant use of 
nested subroutines with arguments. Her project is almost entirely composed of function definitions and 
invocations; accordingly, her project's computational content was among the highest in the class. 

Summative computational task
At the end of the 8th grade year, we gave students an open-ended computational task over the course of two 45-
minute class periods and analyzed the extent to which students used computational thinking to solve the task.
The task presented students with a list of items for sale at a store, and asked students to spend a specified
amount of money on exactly two items. There were six cases of the problem which only varied by the amount of
money to spend and the length of the price list. The early cases could easily be completed by hand; the later
cases had so many possibilities that they were intractable without the use of a computer. Then there were two
final  variations:  a  case in which three  items should be purchased  and a case in  which two items must be
purchased which added up to a certain price and to a certain weight. Students were provided each problem as a
handout and were also given links to a starter Scratch and Python project initialized with the data. Students were
encouraged to approach the problem as a fun puzzle, freely requesting help from their teachers and peers, and
using  any  strategies  of  their  choice.  There  was  no  grade,  reward,  or  recognition  attached  to  students'
performance. At the end of each class session, students completed a survey in which they explained their work. 

Prior experience
Finally, we attempted to control for prior experiences by including two additional factors in some models. At the
beginning of sixth grade, students began by completing a series of puzzles called  Carol the Robot. In these
puzzles, students wrote instructions to guide a robot through a maze to collect beacons without hitting walls. We
used students' scores on this task as a measure of prior computational thinking skill. Additionally, at the end of
sixth grade, students' teachers were asked to estimate their general quantitative skills.

Analysis
We developed a rubric to evaluate students' use of computational thinking on the summative task (See Table 1).
The  rubric  focuses  on  the  core  computational  thinking  practices  of  framing  the  problem,  designing  an
algorithmic approach, and using a computer to implement it. In evaluating students on the rubric, we used their
final  submissions and their reflections,  in which they explained and justified the approach they took to the
problem. Scoring students solely on the number of cases students solved would not have been an adequate
measure of computational thinking because some industrious students spent the entire 90 minutes doing tedious
but occasionally lucky guess-and-check, while other students developed computational solutions which failed
due to bugs. The least successful  students used manual guess-and-check with no indication of a systematic
approach; the most successful students developed correct, generalized solutions in Scratch or Python. Of the
students  who used  programming,  most  used  Python;  only  three  chose  to  use  Scratch  (two of  whom were
successful). We were surprised at the diversity of students' approaches. Many used ad-hoc computational tools
such as Excel to sort the numbers in a list or Word's search feature as part of an otherwise-manual strategy.
 

Table 1. Rubric used to evaluate students' use of computational thinking in the summative task.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Worked by hand 
or using a 
calculator. No 
evidence of a 
computational 
strategy. (Ex: 
guessed pairs of 
numbers over 
and over)

Worked by hand 
or using a 
calculator. Used 
a computational 
strategy. (Ex: 
decomposed the 
problem; 
systematically 
tested cases)

Used an ad-hoc  
tool (Ex: Word, 
Excel) to 
implement a 
computational 
strategy (Ex: 
decomposed the 
problem; sorting;
searching) 

Attempted to 
implement an 
algorithm using 
Scratch or 
Python, but did 
not solve all the 
two-item cases.

Successfully 
implemented an 
algorithm using 
Scratch or 
Python to solve 
all the two-item 
cases. 

Successfully 
implemented a 
generalized 
algorithm 
solving a more 
complex case as 
well.



Having defined metrics for students' Scratch projects and the summative measure, we used standard
OLS linear regression to estimate the association between students' block-based programming practices  and
their performance on the summative task. Because our dependent variable is  ordinal,  we assume the rubric
measures  a  latent,  continuous  random variable.  This  analysis  treats  the  rubric  categories  as  evenly-spaced
intervals,  an  assumption we are  comfortable  making because  the score  distribution approximates  a  normal
distribution (M=2.75; SD=1.47; skew=-0.22; kurtosis=-0.81).  For each of the two dimensions on which we
analyzed students' Scratch projects, we used the average normalized score across the three projects. 

Results
We found that both  elaboration (r=0.512) and  computational content (r=0.322) in block-based programming
were positively correlated with higher performance on the summative assessment several years later. However,
we found that project elaboration was a much more important metric (See Table 2). Computational content is
also  not  a  statistically  significant  predictor  of  summative  scores  when  outliers  are  removed.  The  effects
remained largely unchanged when controlling for prior computational thinking skill and teachers' estimates of
quantitative skill. Figure 5 plots each metric against summative performance. 

Table 2. Regression effect sizes (and p-values) predicting summative performance.

computational content elaboration prior ct (Carol the Robot) prior quantitative

0.80 (0.035)

1.21 (0.001)

0.57 (0.094) 1.10 (0.001)

0.55 (0.11) 1.14 (0.001) -0.14 (0.427)

0.01 (0.074) 1.01 (0.003) -0.21 (0.236) 0.49 (0.118)

Figure 5. Scores for each metric plotted against summative scores with regression and 95% confidence interval.

Discussion
We found that students who engage more deeply in creating Scratch projects, measured in either of two ways,
are significantly more likely to perform well on a test of computational thinking skill several years later, even
though all but three students chose to use tools other than Scratch in the summative assessment. Prior research
has found little evidence of novices learning across programming interfaces (Armoni, Meerbaum-Salant, and
Ben-Ari, 2015; Weintrop, 2016). There is also little evidence that programming experience develops generalized
mental functions (Pea & Kurland, 1984), or for far transfer of thinking skills more generally  (Barnett & Ceci,
2002). Our findings are an important result in an area where very little longitudinal research is available. 

Comparing the two metrics of students' Scratch projects, we were surprised to find that students' project
elaboration was much more associated with summative scores than  computational content.  This supports the
idea that early computer science experience should be designed to support students in working on robust and
sustained  programming  projects.  Working  on  personally-meaningful  projects  may  be  more  important  than
ensuring all students have a uniform foundation in basic computer science concepts.  This is well-aligned with



sociocultural  research  showing  the  importance  of  supporting  the  development  of  student  interest  and
identification with computer science, particularly for marginalized students. Students need to feel a sense of
belonging to learn effectively, and computer science is pervasively stereotyped as being a subject most suitable
for  white,  male,  high-achieving  students  (Margolis  2003;  Margolis  et  al,  2010)  Fostering  communities  of
creative media production can help to dismantle stereotypes and increase participation (Kafai & Peppler, 2011).
The importance  of  these literacy  practices  is  not  reflected  in  several  national  initiatives  to  teach  computer
science. Future research on the reflections and self-assessments students submitted with their projects will allow
us to corroborate our interpretation of the elaboration metric and to study students' process as well as product. 

Our findings suggest  that  computational  literacy  practices  are associated with long-term growth in
computational thinking, even under the narrower definition of computational thinking. While the definition of
computational  thinking  is  arbitrary,  our  study  suggests  that  students'  sociocultural  practices  may  play  an
important role in learning even core computer science content. Therefore, a broader definition, which recognizes
computational thinking as a situated set of practices, might be the most useful. This is in line with Kafai &
Burke's  (2013)  call  to  reframe  computational  thinking as  computational  participation,  and  diSessa's  (2017)
argument for extending computational thinking to computational literacy. 

Conclusions
This study offers one of the only longitudinal accounts of early computer science learning, and provides strong
evidence that students' programming practices lead to long-term growth in computational thinking. The breadth
of  our  central  construct,  computational  thinking,  is  still  taking  shape.  This  study also  offers  an  empirical
exploration of  the effects  of  operating under different  definitions of  computational  thinking. In  subsequent
research, we intend to strengthen these claims by analyzing this cohort's reflective writing and self-assessment
over the course of their middle-school experience learning computer science. 

Acknowledgements
Funding for this study was provided by the Lemann Center for Entrepreneurship and Educational Innovation in
Brazil. We are grateful to the students and teachers who shared their time with us to make this study possible. 

References
Aho, A. V. (2011). Ubiquity symposium: Computation and computational thinking. Ubiquity, 2011(January), 1.
Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: blocks and beyond.

Communications of the ACM, 60(6), 72-80.
Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer.

Psychological bulletin, 128(4), 612.
Barron, B. (2004). Learning ecologies for technological fluency: Gender and experience differences. Journal of

Educational Computing Research, 31(1), 1-36.
Barron, B., Wise, S., & Martin, C. K. (2013). Creating within and across life spaces: The role of a computer

clubhouse in a child’s learning ecology. In LOST Opportunities (pp. 99-118). Springer Netherlands.
Bell, T. C., Witten, I. H., Fellows, M. R., Adams, R., & McKenzie, J. (2015). CS Unplugged: An Enrichment

and extension programme for primary-aged students.
Blikstein, P. (2018). Pre-College Computer Science Education: A Survey of the Field. Mountain View, CA:

Google LLC.
Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of

computational  thinking.  In  Proceedings  of  the  2012  annual  meeting  of  the  American  Educational
Research Association, Vancouver, Canada (pp. 1-25).

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-computer scientists.
Unpublished manuscript.

CSTA Standards Task Force. (2011). CSTA K-12 computer science Standards. 
Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM,

60(6), 33-39.
diSessa, A. A. (2017, June). What If Your Project's Timeline is a 100 Years?: Reflections on Computational

Literacies. In Proceedings of the 2017 Conference on Interaction Design and Children (pp. 1-2). ACM.
Fields,  D. A.,  Quirke, L.,  Amely, J.,  & Maughan,  J.  (2016, February).  Combining big data and thick data

analyses for understanding youth learning trajectories in a summer coding camp. In Proceedings of the
47th ACM technical symposium on computing science education (pp. 150-155). ACM.



Franklin, D., Conrad, P., Aldana, G., & Hough, S. (2011, March). Animal tlatoque: attracting middle school
students to computing through culturally-relevant themes. In Proceedings of the 42nd ACM technical
symposium on Computer science education (pp. 453-458). ACM.

Fraser, N. (2013). Blockly: A visual programming editor. https://developers.google.com/blockly/
Goode,  J.,  &  Margolis,  J.  (2011).  Exploring  computer  science:  A  case  study  of  school  reform.  ACM

Transactions on Computing Education (TOCE), 11(2), 12.
Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field. Educational

Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051
Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM, 51(8), 25. 
K–12 computer science Framework. (2016). Retrieved from http://www.k12cs.org.
Kafai, Y. B., & Burke, Q. (2013, March). The social turn in K-12 programming: moving from computational

thinking  to  computational  participation.  In  Proceeding  of  the  44th  ACM technical  symposium on
computer science education (pp. 603-608). ACM.

Kafai, Y. B., & Peppler, K. A. (2011). Youth, technology, and DIY: Developing participatory competencies in
creative media production. Review of research in education, 35(1), 89-119.

Kelleher,  C.,  &  Pausch,  R.  (2005).  Lowering  the  barriers  to  programming:  A  taxonomy of  programming
environments and languages for novice programmers. ACM Computing Surveys, 37(2), 83-137.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice: urban youth
learning programming with scratch (Vol. 40, No. 1, pp. 367-371). ACM.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. MIT press.
Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2010). Stuck in the shallow end: Education, race,

and computing. MIT Press.
National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking.

National Academies Press.
National Research Council. (2011). Report of a workshop on the pedagogical aspects of computational thinking.

National Academies Press.
National Research Council. (2013). Next generation science standards: For states, by states.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc..
Papert, S. (1991). Situating Constructionism. Constructionism. I. Harel and S. Papert. Norwood.
Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New ideas in

psychology, 2(2), 137-168.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009).

Scratch: programming for all. Communications of the ACM, 52(11), 60-67.
Sivilotti,  P.  A.,  &  Laugel,  S.  A.  (2008,  March).  Scratching  the  surface  of  advanced  topics  in  software

engineering: a workshop module for middle school students. In ACM SIGCSE Bulletin (Vol. 40, No.
1, pp. 291-295). ACM.

Tew, A. E., & Guzdial, M. (2011, March). The FCS1: a language independent assessment of CS1 knowledge. In
Proceedings of the 42nd ACM technical symposium on Computer science education (pp. 111-116).
ACM.

Tew, A. E., & Dorn, B. (2013). The case for validated tools in computer science education research. Computer,
46(9), 60-66.

Weintrop, D. (2016). Modality Matters: Understanding the Effects of Programming Language Representation in
High School computer science Classrooms (Doctoral dissertation, Northwestern University).

Weintrop,  D.,  Beheshti,  E.,  Horn,  M.,  Orton,  K.,  Jona,  K.,  Trouille,  L.,  & Wilensky,  U.  (2016).  Defining
computational  thinking for mathematics and science  classrooms.  Journal  of Science Education and
Technology, 25(1), 127-147.

Weintrop, D., & Wilensky, U. (2015, June). To block or not to block, that is the question: students' perceptions
of  blocks-based  programming.  In  Proceedings  of  the  14th  International  Conference  on  Interaction
Design and Children (pp. 199-208). ACM.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The fairy performance assessment:
measuring  computational  thinking  in  middle  school.  In  Proceedings  of  the  43rd  ACM  technical
symposium on Computer Science Education (pp. 215-220). ACM.

Wilensky,  U.,  & Papert,  S.  (2010).  Restructurations:  Reformulations of knowledge disciplines through new
representational forms. Constructionism.

Wilson, C. (2014). Hour of code: we can solve the diversity problem in computer science. ACM Inroads, 5(4),
22-22.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.


	Introduction
	Background
	Methods
	Measures
	Scratch
	Summative computational task
	Prior experience

	Analysis

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

